A gradient elution with glutathione (GSH) from a GSH-Sepharose 6B affinity column separated the hepatic mouse glutathione S-transferases (GST) to the alpha-, mu- and pi-classes. The GST-dependent conjugation of atrazine and glutathione was catalyzed by a pi-class GST. The pi- and mu-classes were both identified by their respective specific substrates, and after reverse-phase HPLC, by N-terminal analysis of 19-35 of the amino acids. The alpha-class GST was associated with a high selenium-independent GSH peroxidase activity and the purified protein had a N-blocked terminal. Strain related differences in the pi-class GST of the CD-1, C57BL/6, DBA/2 and Swiss-Webster males were observed by PhastGel electrophoresis of the GSH affinity chromatograph separated fractions, reverse phase HPLC and by N-terminal amino acid sequence analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-4165(94)00138-nDOI Listing

Publication Analysis

Top Keywords

gradient elution
8
pi-class gst
8
hplc n-terminal
8
strain- sex-specific
4
sex-specific differences
4
glutathione
4
differences glutathione
4
glutathione s-transferase
4
s-transferase class
4
class mouse
4

Similar Publications

For individuals at high risk of developing breast cancer, interventions to mitigate this risk include surgical removal of their breasts and ovaries or five years treatment with the anti-estrogen tamoxifen or aromatase inhibitors. We hypothesized that a silicone based anti-estrogen-eluting implant placed within the breast would provide the risk reduction benefit of hormonal therapy, but without the adverse effects that limit compliance. To this end, we demonstrate that when placed adjacent to mammary tissue in the 7,12-dimethylbenz[a]anthracene-induced rat breast cancer model a fulvestrant-eluting implant delays breast cancer with minimal systemic exposure.

View Article and Find Full Text PDF

Various technical methodologies are required to accurately detect substances of different chemical and pharmacological properties in biological samples, which are increasing in number and variety daily. Therefore, laboratories where many samples and different factors are analyzed simultaneously need methods with easy sample preparation, short analysis times and low analysis costs. In this study, the objective was to scan substances susceptible to chemical degradation, amenable to analysis without hydrolysis, and exhibiting short-term stability by employing a straightforward, expeditious, and cost-efficient method.

View Article and Find Full Text PDF

In silico optimization of a challenging bispecific antibody chromatography step.

Biotechnol Prog

January 2025

Automation, Digital and Learning Solutions, Cytiva, Karlsruhe, Germany.

Mechanistic modeling of chromatographic steps is an effective tool in biopharma process development that enhances process understanding and accelerates optimization efforts and subsequent risk assessment. A relatively new model for ion exchange chromatography is the colloidal particle adsorption (CPA) formalism, which promises improved separation of material and molecule-specific parameters. This case study demonstrates a straightforward CPA modeling workflow to describe an ion exchange chromatography polishing step of a knobs-into-holes construct bispecific antibody molecule.

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!