We have already shown that alkylcatechol markedly enhances synthesis/secretion of nerve growth factor (NGF) in cultured mouse fibroblasts and astroglial cells through immediate accumulation of NGF mRNA and that the stimulatory effect of alkylcatechol on NGF synthesis/secretion is synergistically enhanced by the coadministration of phorbol 12-myristate 13-acetate (PMA). The stimulatory effect on NGF mRNA expression of astroglial cells in culture by 4-methylcatechol (MC), an alkylcatechol, and/or PMA was blocked by treatment of the cells with cycloheximide, suggesting de novo synthesis of some cellular protein(s) is essential for the observed increase in the NGF mRNA level. The exposure to MC and/or PMA caused a rapid increase in c-fos mRNA content, which was immediately followed by an increase in c-jun mRNA, prior to NGF mRNA elevation. The expression of c-fos mRNA was transiently enhanced in all cases of the treatment with MC and/or PMA. The c-jun mRNA expression was also observed transiently when the cells were treated with PMA alone, while the expression of c-jun mRNA was pronounced and long-lasting after the treatment with MC, which was much further enhanced by the coadministration of PMA. The result that the profile of the change in c-jun mRNA expression resembled that in NGF mRNA expression suggests that the increase in c-jun mRNA is responsible for the subsequent increase in NGF mRNA after MC treatment. The contransfection of mouse astroglial cells with expression plasmids of c-fos and/or c-jun and NGF promoter gene showed that simultaneous expression of both c-fos and c-jun genes was necessary to enhance NGF promoter activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.490390306 | DOI Listing |
Ocul Surf
December 2024
Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany. Electronic address:
The integrity of corneal nerves is critical for ocular surface health, and damages can lead to Neurotrophic Keratopathy (NK). Despite the regenerative abilities of the peripheral nerve system (PNS), corneal nerve regeneration is often incomplete, and the underlying mechanisms are poorly understood. This study aims to identify potential factors that can enhance corneal nerve regeneration for NK treatment, with a focus on Lysophosphatidic acid (LPA).
View Article and Find Full Text PDFComput Biol Med
February 2025
Department of Bioconvergence, Hoseo University, Asan, South Korea; Dept. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea. Electronic address:
J Pain Res
November 2024
Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea.
Background: Paclitaxel (PTX) can induce chemotherapy-induced peripheral neuropathy (CIPN) as a side effect. The aim of this study was to understand the neurochemical changes induced by NGF/TrkA signaling in PTX-induced neuropathic pain.
Methods: The PTX-induced CIPN mouse model was evaluated using nerve conduction velocity (NCV) and behavioral tests.
Int J Mol Sci
October 2024
Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 15772 Athens, Greece.
Burning mouth syndrome (BMS) is a chronic idiopathic orofacial pain disorder, characterized by persistent burning sensations and pain without clear pathological causes. Recent research suggests that small fiber neuropathy (SFN) may play a significant role in the neuropathic pain and sensory disturbances associated with BMS. Following PRISMA guidelines, this systematic review aims to evaluate and synthesize current evidence supporting SFN's involvement in BMS.
View Article and Find Full Text PDFNeurol Res
December 2024
Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Introduction: Astrocytes, specialized glial cells, are essential for maintaining the central nervous system homeostasis. Inflammatory conditions can disrupt neurotrophic factors and receptor expression in astrocytes, leading to potential central nervous system damage. Itaconate, recently identified for its anti-inflammatory properties, was investigated in this study for its effects on neurotrophic factors in LPS-stimulated primary rat astrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!