A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. | LitMetric

Sequence analysis of the dnrR2 locus from the cluster of daunorubicin biosynthesis genes in Streptomyces peucetius ATCC 29050 has revealed the presence of two divergently transcribed open reading frames, dnrN and dnrO. The dnrN gene appears to encode a response regulator protein on the basis of conservation of the deduced amino acid sequence relative to those of known response regulators and the properties of the dnrN::aphII mutant. Surprisingly, amino acid substitutions (glutamate and asparagine) at the putative site of phosphorylation (aspartate 55) resulted in a reduction rather than a complete loss of DnrN activity. The deduced DnrO protein was found to be similar to the Streptomyces glaucescens tetracenomycin C resistance gene repressor (TcmR) and to two Escherichia coli repressors, the biotin operon repressor (BirA) and the tetracycline resistance gene repressor (TetR). The dnrN::aphII mutation was suppressed by introduction of the dnrI gene on a plasmid. Since the introduction of dnrN failed to restore antibiotic production to a dnrI::aphII mutant, these data suggest the presence of a regulatory cascade in which dnrN activates the transcription of dnrI, which in turn activates transcription of the daunorubicin biosynthesis genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC176726PMC
http://dx.doi.org/10.1128/jb.177.5.1216-1224.1995DOI Listing

Publication Analysis

Top Keywords

streptomyces peucetius
8
dnrr2 locus
8
daunorubicin biosynthesis
8
biosynthesis genes
8
amino acid
8
resistance gene
8
gene repressor
8
activates transcription
8
dnrn
5
regulation daunorubicin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!