We previously proposed that the adjacent dnrIJ genes represent a two-component regulatory system controlling daunorubicin biosynthesis in Streptomyces peucetius on the basis of the homology of the DnrI and DnrJ proteins to other response regulator proteins and the effect of a dnrI::aphII mutation. In the present paper we report the results of work with the dnrI::aphII mutant in complementation, bioconversion, and transcriptional analysis experiments to understand the function of dnrI. For five putative operons in the sequenced portion of the S. peucetius daunorubicin biosynthesis gene cluster examined, all of the potential transcripts are present in the delta dnrJ mutant and wild-type strains but absent in the dnrI::aphII strain. Since these transcripts code for both early- and late-acting enzymes in daunorubicin biosynthesis, dnrI seems to control all of the daunorubicin biosynthesis genes directly or indirectly. Transcriptional mapping of the 5' and 3' ends of the dnrIJ transcript and the termination site of the convergently transcribed dnrZUV transcript reveals, interestingly, that the two transcripts share extensive complementarity in the regions coding for daunorubicin biosynthesis enzymes. In addition, dnrI may regulate the expression of the drrAB and drrC daunorubicin resistance genes. The delta dnrJ mutant accumulates epsilon-rhodomycinone, the aglycone precursor of daunorubicin. Since this mutant contains transcripts coding for several early- and late-acting enzymes and since dnr mutants blocked in deoxysugar biosynthesis accumulate epsilon-rhodomycinone, we conclude that dnrJ is a daunosamine biosynthesis gene. Moreover, newly available gene sequence data show that the DnrJ protein resembles a group of putative aminotransferase enzymes, suggesting that the role of DnrJ is to add an amino group to an intermediate of daunosamine biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC176725PMC
http://dx.doi.org/10.1128/jb.177.5.1208-1215.1995DOI Listing

Publication Analysis

Top Keywords

daunorubicin biosynthesis
24
biosynthesis
9
transcriptional analysis
8
daunorubicin
8
biosynthesis streptomyces
8
streptomyces peucetius
8
biosynthesis gene
8
delta dnrj
8
dnrj mutant
8
early- late-acting
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: Doxorubicin (Dox), a chemotherapeutic agent, is known to cause chemobrain leading to cognitive decline and brain mitochondrial dysfunction. Ivabradine (Iva), hyperpolarization-activated cyclic nucleotide-gated channel blocker used for angina and arrhythmia, has been shown to be an anticonvulsant, antioxidant, and neuroprotective agent. However, the effects of Iva on cognitive function, and brain mitochondrial function in Dox-induced chemobrain are still not determined.

View Article and Find Full Text PDF

Mitochondria-Targeting Virus-Like Gold Nanoparticles Enhance Chemophototherapeutic Efficacy Against Pancreatic Cancer in a Xenograft Mouse Model.

Int J Nanomedicine

January 2025

Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People's Republic of China.

Background: The dense and fibrotic nature of the pancreatic tumor microenvironment significantly contributes to tumor invasion and metastasis. This challenging environment acts as a formidable barrier, hindering effective drug penetration and delivery, which ultimately limits the efficacy of conventional cancer treatments. Gold nanoparticles (AuNPs) have emerged as promising nanocarriers to overcome the extracellular matrix barrier; however, their limited targeting precision, poor delivery efficiency, and insufficient photothermal conversion present challenges.

View Article and Find Full Text PDF

The transcriptional repressor HEY2 regulates mitochondrial oxidative respiration to maintain cardiac homeostasis.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore how asiatic acid (AA) affects the drug resistance in human leukemia cells (K562/ADR) resistant to adriamycin (ADR).
  • AA was found to reduce the resistance of these cells and enhance the effectiveness of ADR, as shown by various assays including CCK-8 and flow cytometry.
  • The results indicated that AA down-regulates the expression of certain proteins related to drug resistance, suggesting a potential mechanism for reversing resistance in these cancer cells.
View Article and Find Full Text PDF

Dehydroevodiamine Alleviates Doxorubicin-Induced Cardiomyocyte Injury by Regulating Neuregulin-1/ErbB Signaling.

Cardiovasc Ther

January 2025

Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China.

Doxorubicin (DOX) is a widely used antitumor drug; however, its use is limited by the risk of serious cardiotoxicity. Dehydroevodiamine (DHE) is a quinazoline alkaloid which has antiarrhythmic effects. The aim of this study was to investigate the protective effect of DHE on doxorubicin-induced cardiotoxicity (DIC) and its potential mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!