A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Penetration and damage of endothelial cells by Candida albicans. | LitMetric

Penetration and damage of endothelial cells by Candida albicans.

Infect Immun

Department of Internal Medicine, UCLA School of Medicine, St. John's Cardiovascular Research Center, Harbor-UCLA Research and Education Institute, Torrance 90509.

Published: March 1995

The mechanisms of phagocytosis of Candida albicans by human vascular endothelial cells and subsequent endothelial cell injury were examined in vitro. Both live and killed C. albicans cells were phagocytized by endothelial cells. This organism specifically induced endothelial cell phagocytosis because neither Candida tropicalis nor Torulopsis glabrata was ingested. Endothelial cell microfilaments polymerized around C. albicans as the organisms were phagocytized. Cytochalasin D inhibited this polymerization of microfilaments around C. albicans and blocked phagocytosis. The blocking of actin depolymerization with phalloidin had no effect on microfilament condensation around the organism, indicating that the microfilaments surrounding C. albicans are formed from a pool of G-actin. Intact microtubules were also necessary for the phagocytosis of C. albicans, since the depolymerizing of endothelial cell microtubules with nocodazole prevented the condensation of actin filaments around the organisms and inhibited phagocytosis. In contrast, microtubule depolymerization was not required for microfilament function because the blocking of microtubule depolymerization with taxol had no effect on microfilament condensation around C. albicans. The phagocytosis of C. albicans was pivotal in the induction of endothelial cell damage, since the blocking of candidal internalization significantly reduced endothelial cell injury. Endothelial cells were not damaged by phagocytosis of dead organisms, indicating that injury was caused by a factor associated with viable organisms. Therefore, C. albicans is uniquely able to induce endothelial cell phagocytosis by comparison with non-albicans species of Candida. Furthermore, at least two components of the endothelial cytoskeleton, microfilaments and microtubules, are necessary for the phagocytosis of C. albicans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC173098PMC
http://dx.doi.org/10.1128/iai.63.3.976-983.1995DOI Listing

Publication Analysis

Top Keywords

endothelial cell
28
endothelial cells
16
endothelial
12
phagocytosis albicans
12
albicans
11
phagocytosis
9
candida albicans
8
phagocytosis candida
8
cell injury
8
cell phagocytosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!