Recent discoveries have suggested that the exchange of multiple leukocyte lineages between grafts and host and subsequent long-term chimerism in both is the seminal mechanism of the acceptance of organs transplanted from the same (allografts) or different species (xenografts). This insight suggests new strategies which may allow xenotransplantation, the principal obstacle to which has been humoral rejection. We have defined humoral rejection as a family of complement activation syndromes afflicting allografts and xenografts in which there is a strong (but not invariable) association with performed antigraft antibodies, invariable evidence of complement activation, histopathologic stigmas of vascular endothelial damage, and a concomitant local or systemic coagulopathy. The generic descriptive term hyperacute rejection is a misnomer because a slow-motion version of the same "humoral" process can occur with some allografts and is the rule with the so-called concordant species xenotransplantations. The pathway of experience and discovery leading to this conclusion shows clearly that the distinction frequently made between allograft versus xenograft humoral rejection does not actually exist in principle, but only in details and intensity. Breaking down this barrier to xenotransplantation, whether or not it is associated with antibodies, is unrealistic. However, the possibility of avoiding the barrier has been exposed by showing that animal organs can be humanized, with a mixed donor and recipient cell population similar to the chimerism seen in long surviving allografts or even with complete leukocyte replacement. Pilot experiments in rodents suggest that organs from fully xenogeneic chimeras can be made into xenogeneic targets that are no more provocative of complement activation than allografts when they are transplanted into the donor bone marrow species. Although the validity of this concept of organ xenograft preparation is only at the pilot stage of verification, there is reason to suspect that the complement trigger of humoral rejection can be thereby disarmed. If this can be accomplished, independent evidence suggests that cellular rejection can be controlled with conventional T-cell directed immunosuppression, perhaps even with surprising ease. The potential subtle liability of synthetic products of xenogeneic parenchymal cells is not yet known.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005617 | PMC |
http://dx.doi.org/10.1111/j.1600-065x.1994.tb00879.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!