The effects of altered terminal sequences in human chorionic gonadotropin (hCG) N- and O-linked glycans on receptor binding and signal transduction were analyzed using forms of hCG with remodelled carbohydrate chains. hCG derivatives were obtained by enzymic removal of the alpha 3-linked sialic acid residues followed by alpha 6-sialylation, alpha 3-galactosylation or alpha 3-fucosylation of uncovered Gal beta 1-->4GlcNAc (LacNAc) termini, or alpha 3-sialylation of Gal beta 1-->3GalNAc sequences. Also a form that carried GalNAc beta 1-->4-GlcNAc units, which are typical for pituitary hormone oligosaccharides, was derived by enzymic desialylation and degalactosylation followed by beta 4-N-acetylgalactosaminylation. The potency to stimulate testosterone production and the binding to the lutotropin/choriogonadotropin receptor of the preparations were compared with those of native and desialylated hCG (as-hCG). The decrease in bioactivity caused by desialylation of hCG was only restored upon alpha 6-sialylation of the Gal beta 1-->4GlcNAc beta 1-->-2Man alpha 1-->3Man branch of the N-linked glycans. This was without a major effect on receptor binding. Further alpha 6-sialylation, occurring at the Gal beta 1-->4GlcNAc beta 1-->2Man alpha 1-->6Man branch, resulted in a bioactivity below a level found with as-hCG, concomitant with a decreased receptor binding affinity. Similarly alpha 3-galactosylation of the Gal beta 1-->4GlcNAc beta 1-->2-Man alpha 1-->6Man branch yielded a hCG derivative that showed decreased bioactivity and receptor binding. alpha 3-Fucosylation of native as well as as-hCG also led to a decreased activity. Re-alpha 3-sialylation of the O-linked chains on as-hCG had little effect on the bioactivity and receptor binding. Hormone preparations with GalNAc beta 1-->4GlcNAc termini showed lower bioactivity and receptor affinity than as-hCG. It is concluded that the Gal beta 1-->4GlcNAc beta 1-->2Man alpha 1-->3Man- rather than the Gal beta 1-->4GlcNAc beta 1-->2-Man alpha 1-->6Man branch of the N-linked glycans on hCG plays an essential role in signal transduction, whereas the latter branch can potentially interfere with receptor binding. Furthermore attachment of sialic acid, but not of other sugars, to the first branch fulfils the requirement for the full expression of bioactivity, while sialylation of the O-linked chains is of minor importance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1995.tb20214.xDOI Listing

Publication Analysis

Top Keywords

receptor binding
28
gal beta
28
beta 1-->4glcnac
28
1-->4glcnac beta
20
beta
15
alpha
14
alpha 6-sialylation
12
alpha 1-->6man
12
1-->6man branch
12
bioactivity receptor
12

Similar Publications

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

Discovery of potential VEGFR-2 inhibitors from natural products by virtual screening and molecular dynamics simulation.

Phys Chem Chem Phys

January 2025

Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.

Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.

View Article and Find Full Text PDF

Approximately 10-20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization, or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions' oncogenic and tumorigenic properties. Of 11 cases with surgical pathology, 82% were carcinomas and 18% noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP).

View Article and Find Full Text PDF

Innate Immunity Never "NODs" Off: NLRs Regulate the Host Anti-Viral Immune Response.

Immunol Rev

March 2025

Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, Virginia, USA.

A robust innate immune response is essential in combating viral pathogens. However, it is equally critical to quell overzealous immune signaling to limit collateral damage and enable inflammation resolution. Pattern recognition receptors are critical regulators of these processes.

View Article and Find Full Text PDF

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!