The layer formation of unilamellar vesicles of L-alpha-dimyristoyl phosphatidylcholine (DMPC) spread onto the air/liquid interface has been investigated. The layers were transferred to clean glass slides and onto slides made hydrophobic with multilayers of Cd arachidate. Aged vesicle suspensions aggregate during storage and are transferred as large domains as imaged with atomic force microscopy (AFM). Freshly prepared vesicles fuse and can be transferred as monolayers to hydrophobic supports. Furthermore, AFM images reveal the importance of positioning the solid support parallel to the moving barrier in order to obtain more uniform deposition of Cd arachidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2736(94)00221-a | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Furman University, Greenville, South Carolina 29613, United States.
Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
Novel anode materials for lithium-ion batteries (LIBs) are constantly being explored to further improve battery performance. In this work, ReaxFF molecular dynamics (MD) simulations are performed to model the early stages in the synthesis of nanostructured silicon carbide (SiC), which is one such promising material. The focus lies on its precursor, silicon oxycarbide glass of composition (SiOC) (17 mol% Si, 28 mol% O, and 54 mol% C), in the following referred to as SiOC.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
December 2024
Department of Oral Biology and Oral Pathology, Saveetha Dental College and Hopsitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
Introduction: Enamel translucency, essential for the aesthetic appeal of teeth, is primarily determined by its thickness, quality, and refractive index. Several factors, including age, genetics, diet, oral hygiene practices, fluoride exposure, and acidic challenges, can influence enamel translucency. Tobacco use, in particular, leads to significant alterations in enamel appearance by penetrating its micropores, causing yellowing and browning.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
This study investigates the production and inter-fibril interactions of uniformly truncated amyloid nanofibrils. By varying extrusion cycles (0, 50, and 100) and using carbonate filters with 100 nm and 200 nm pore sizes, precise fibril length control was achieved. Atomic force microscopy (AFM) confirmed that the mean length of the truncated fibrils corresponded to the respective pore size as extrusion cycles increased.
View Article and Find Full Text PDFACS Nano
January 2025
Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
The iron-regulated surface determinant protein B (IsdB) has recently been shown to bind to toll-like receptor 4 (TLR4), thereby inducing a strong inflammatory response in innate immune cells. Currently, two unsolved questions are (i) What is the molecular mechanism of the IsdB-TLR4 interaction? and (ii) Does it also play a role in nonimmune systems? Here, we use single-molecule experiments to demonstrate that IsdB binds TLR4 with both weak and extremely strong forces and that the mechanostability of the molecular complex is dramatically increased by physical stress, sustaining forces up to 2000 pN, at a loading rate of 10 pN/s. We also show that TLR4 binding by IsdB mediates time-dependent bacterial adhesion to endothelial cells, pointing to the role of this bond in cell invasion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!