cDNAs encoding for M1 and M3 muscarinic acetylcholine (ACh) receptors were detected in rat pancreatic islet cells by polymerase chain reaction (PCR) amplification techniques. A new cholinergic agonist, oxotremorine-m (oxo-m), in the presence of glucose (5.6 mM), produced a dose-dependent potentiation of insulin secretion saturating at approximately 5 microM. This effect was suppressed by the L-type Ca2+ channel blocker nifedipine. Higher doses of oxo-m (50 microM) induced a biphasic insulin response both at low (5.6 mM) or high (16.7 mM) glucose concentrations. In a Ca(2+)-deficient medium containing glucose (5.6 mM), oxo-m evoked only a reduced first phase of insulin secretion. The potentiating effects of oxo-m were inhibited by the muscarinic receptor antagonists 4-diphenylacetoxy-N-methylpiperidine methiodide (M3), hexahydro-sila-difenidol hydrochloride, p-fluoro analogue (M3 > M1 > M2), and pirenzepine (M1) in a dose-dependent manner; half-maximal inhibitory concentration values were approximately 5, 20, and 340 nM, respectively. The PCR results demonstrate the presence of M1 and M3 muscarinic ACh receptors in the islet tissue, and the secretion data strongly suggest that the potentiation of glucose-induced insulin release evoked by oxo-m depends on the activation of a muscarinic M3-subtype receptor present in the beta-cell membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.1995.268.2.E336 | DOI Listing |
Foods
January 2025
Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
L-theanine, a non-protein amino acid naturally occurring in tea leaves, is recognized for its antioxidant, anti-inflammatory, and neuroprotective properties. Despite its known benefits, the mechanisms by which L-theanine influences lifespan extension remain poorly understood. This study investigated the effects of L-theanine on the lifespan of and explored the underlying mechanisms.
View Article and Find Full Text PDFInt J Obes (Lond)
January 2025
Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
Background: Metabolic dysregulation, a defining feature of obesity, disrupts essential signalling pathways involved in nutrient sensing and mitochondria homeostasis. The nuclear factor erythroid 2-related factor 2 (NRF-2) serves as a pivotal regulator of the cellular stress response, and recent studies have implicated it in the pathogenesis of obesity, diabetes, and metabolic syndrome. Curcumin, a polyphenolic compound derived from turmeric, has been identified as a potent activator of NRF-2.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!