Despite hypercellular bone marrows (BM), peripheral cytopenias are the rule in patients with myelodysplastic syndromes (MDS). This study examined the roles played by cell birth and cell death rates in generating this paradox. Cell kinetics from BM biopsies of 35 MDS patients were measured using intravenous infusions of either iododeoxyuridine or bromodeoxyuridine, or both. Degree of apoptosis or programmed cell death (PCD) was estimated using in situ end-labeling of DNA directly from BM biopsies, which were simultaneously double-labeled from proliferation/PCD. MDS were found to be highly proliferative disorders with large numbers of myeloid, erythroid, and megakaryocytic cells synthesizing DNA. Median cycling time (Tc) of myeloblasts was more rapid than that of patients with acute myeloid leukemia (44.1 hr vs. 56.0 hr). Interestingly, most marrow cells of all three lineages in 32 of 34 evaluable cases were undergoing PCD. In 19 of 32 patients, greater than 75% cells were apoptotic. Surprisingly, large numbers of S-phase cells were found to be simultaneously undergoing PCD, as were stromal cells of the BM microenvironment. We conclude that the extensive apoptosis in hematopoietic cells effectively cancels the high birth rate resulting in ineffective hematopoiesis and accounting for deficient bone marrow function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.2830480302DOI Listing

Publication Analysis

Top Keywords

cell death
12
cell kinetics
8
programmed cell
8
bone marrow
8
extensive apoptosis
8
ineffective hematopoiesis
8
large numbers
8
undergoing pcd
8
cell
6
cells
6

Similar Publications

Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.

View Article and Find Full Text PDF

The unexpected PD-L1 suppression function of celery-derived extracellular vesicles improves lung cancer chemotherapy efficacy.

Extracell Vesicles Circ Nucl Acids

November 2024

State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.

The article explores celery-derived extracellular vesicles (CDEVs), characterized by high cellular uptake, low immunogenicity, and high stability, as a therapeutic strategy for antitumor nanomedicines. The methods employed in this study include cell experiments such as co-culture, Western Blot, and flow cytometry. experiments were conducted in C57BL/6 tumor-bearing mice subcutaneously injected with Lewis lung carcinoma (LLC) cells.

View Article and Find Full Text PDF

Engineered extracellular vesicles as "supply vehicles" to alleviate type 1 diabetes.

Extracell Vesicles Circ Nucl Acids

November 2024

The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China.

Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in .

View Article and Find Full Text PDF

Severe cases of COVID-19 are associated with immune responses that lead to a surge in inflammatory molecules, resulting in multi-organ failure and death. This significant increase in inflammatory factors is triggered by viral proteins. Open reading frame 8 (ORF8) has received particular attention as a unique accessory protein of SARS-CoV-2.

View Article and Find Full Text PDF

Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!