Contribution of cotranslational folding to the rate of formation of native protein structure.

Proc Natl Acad Sci U S A

Center for Macromolecular Design, Texas A&M University, College Station 77843-2128.

Published: February 1995

To compare the process of protein folding in the cell with refolding following denaturation in vitro, we have investigated and compared the kinetics of renaturation of a full-length protein upon dilution from concentrated urea with the rate of folding in the course of biosynthesis. Formation of enzymatically active bacterial luciferase, an alpha beta heterodimer, occurred 2 min after completion of beta-subunit synthesis in an Escherichia coli cell-free system. Renaturation of urea-denatured beta subunit, either in the presence of the cell-free protein synthesis system or in buffer solutions, proceeded more slowly. Cellular components present in the cell-free protein synthesis system slightly accelerated the rate of refolding of urea-unfolded beta subunit. The results indicate that the luciferase beta subunit begins the folding process cotranslationally and that cotranslational folding contributes to the rapid formation of the native structure in the cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC42672PMC
http://dx.doi.org/10.1073/pnas.92.4.1227DOI Listing

Publication Analysis

Top Keywords

beta subunit
12
cotranslational folding
8
formation native
8
cell-free protein
8
protein synthesis
8
synthesis system
8
folding
5
protein
5
contribution cotranslational
4
folding rate
4

Similar Publications

Thermal proteome profiling unveils protein targets of deoxycholic acid in living neuronal cells.

Adv Biotechnol (Singap)

December 2023

Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.

Bile acids, synthesized in the liver and modified by the gut microbiota, play vital roles in various physiological processes. The dysregulation of bile acids has been extensively documented in patients with neurodegenerative diseases. However, limited attention has been given to the protein targets associated with microbiota-derived bile acids in neurological diseases.

View Article and Find Full Text PDF

sp. nov., a new hyphomycete from desertified rocky soil in southwest China.

Int J Syst Evol Microbiol

January 2025

Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, PR China.

Two strains of , identified based on morphology and phylogenetic analysis, were isolated from rocky desertification soils in Yunnan province. Phylogenetic analyses inferred from three loci (the internal transcribed spacer of the nuclear ribosomal RNA gene, β-tubulin and RNA polymerase II second-largest subunit) showed that the two strains formed a single clade and were introduced as a new species of , is characterized by having ampulliform or broadly fusiform conidiogenous cells and dark olivaceous-green, oblong-ellipsoidal conidia. Phylogenetically, is most closely related to , but it distinguishes the latter by longer and narrower conidia.

View Article and Find Full Text PDF

Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.

View Article and Find Full Text PDF

The ENaC taste receptor's perceived mechanism of mushroom salty peptides revealed by molecular interaction analysis.

NPJ Sci Food

January 2025

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China.

The ENaC receptor acts as a taste receptor to recognize and perceive salty substances. This study explored the mechanisms by which the ENaC taste receptor recognizes and binds mushroom-derived salty peptides using molecular interaction and molecular simulation. The three subunits α, β, and γ of the ENaC taste receptor (SCNN1α, SCNN1β, and SCNN1γ) showed different recognition characteristics for the salty peptide.

View Article and Find Full Text PDF

Protective effect of CK2 against endoplasmic reticulum stress in pancreatic β cells.

Diabetol Int

January 2025

Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan.

Unlabelled: Endoplasmic reticulum (ER) stress due to obesity or systemic insulin resistance is an important pathogenic factor that could lead to pancreatic β-cell failure. We have previously reported that CCAAT/enhancer-binding protein β (C/EBPβ) is highly induced by ER stress in pancreatic β cells. Moreover, its accumulation hampers the response of these cells to ER stress by inhibiting the induction of the molecular chaperone 78 kDa glucose-regulated protein (GRP78).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!