The participation of IL-2 in insulin-dependent (type 1) diabetes (IDDM) was analyzed in transgenic (tg) mice expressing the nucleoprotein (NP) of lymphocytic choriomeningitis virus and IL-2 under control of the rat insulin promoter focally in beta cells of the islets of Langerhans. Insertion and expression of the viral (self) gene or of the IL-2 gene alone did not lead to IDDM. Infiltration primarily of CD4 and B lymphocytes and increased expression of MHC class I and II molecules occurred in islets where IL-2 was expressed. By contrast, neither cellular infiltrates nor expression of MHC class I or II glycoproteins above base levels was noted in tgs expressing the viral protein alone. Double tg mice expressing both the viral protein and IL-2 in their islets displayed a modest increase in incidence of spontaneous diabetes compared with that of single transgenic mice expressing IL-2 alone. Breaking of immunological unresponsiveness or sensitization to self antigens did not occur. Neither cytotoxic T lymphocytes (CTL) nor antibodies directed against the viral tg (NP) were generated. However, after challenge with lymphocytic choriomeningitis virus, double tg mice developed anti-self (viral) CTL and IDDM (incidence > 95%) within 2 mo. The generation of virus ("self")-specific MHC-restricted CTL was dependent on CD4+ help. In contrast, viral inoculum to single tg mice expressing either the viral protein or IL-2 failed to enhance the incidence of IDDM over 30% for viral protein or 10% for IL-2 after an 8-mo observation period. Hence, in this autoimmune model in situ expression of IL-2 did not break unresponsiveness but markedly enhanced ongoing disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC295493PMC
http://dx.doi.org/10.1172/JCI117688DOI Listing

Publication Analysis

Top Keywords

mice expressing
16
viral protein
16
expressing viral
12
viral
9
il-2
9
break unresponsiveness
8
beta cells
8
transgenic mice
8
lymphocytic choriomeningitis
8
choriomeningitis virus
8

Similar Publications

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, progressive disease that severely affects human health of young adults. Neuroinflammation (NI) and demyelination, as well as their interactions, are key therapeutic targets to halt or slow disease progression. Potent steroidal anti-inflammatory drugs such as methylprednisolone (MP) and remyelinating neurosteroids such as allopregnanolone (ALLO) could be co-administered intranasally to enhance their efficacy by providing direct access to the central nervous system (CNS).

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).

View Article and Find Full Text PDF

Excess Ub-K48 Induces Neuronal Apoptosis in Alzheimer's Disease.

J Integr Neurosci

December 2024

Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, 241002 Wuhu, Anhui, China.

Background: K48-linked ubiquitin chain (Ub-K48) is a crucial ubiquitin chain implicated in protein degradation within the ubiquitin-proteasome system. However, the precise function and molecular mechanism underlying the role of Ub-K48 in the pathogenesis of Alzheimer's disease (AD) and neuronal cell abnormalities remain unclear. The objective of this study was to examine the function of K48 ubiquitination in the etiology of AD, and its associated mechanism of neuronal apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!