A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo models of cerebral ischemia: effects of parenterally administered NMDA receptor glycine site antagonists. | LitMetric

Both in vitro and in vivo experiments have implicated extracellular glycine in the pathogenesis of ischemic brain damage. Recently, halogenated derivatives of quinoxaline-2,3-dione have been synthesized that possess bioavailability when parenterally administered and minimal psychotomimetic properties. Such compounds have allowed investigation into the efficacy of glycine receptor antagonism as a strategy for protection against cerebral ischemic insults. Rats underwent either 90 min of middle cerebral artery filament occlusion or 10 min of forebrain ischemia with recovery while receiving intraperitoneal injections of either a glycine receptor antagonist (ACEA-1021, ACEA-1031, or ACEA-1011) or vehicle (dimethyl sulfoxide). Both ACEA-1021 and ACEA-1031 reduced cerebral infarct volumes and were associated with a reduced incidence of hemiparesis resulting from MCA occlusion. ACEA-1011, administered in a smaller dose had no effect. In the forebrain ischemia model, glycine receptor antagonism had no effect on delayed neuronal necrosis in the hippocampal CA1 sector, neocortex, or caudoputamen. We conclude that pharmacologic antagonism of glycine at the strychnine-insensitive glycine receptor presents a neuroprotective profile similar to that previously observed for antagonists of glutamate at the N-methyl-D-aspartate complex with a potential for fewer side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jcbfm.1995.24DOI Listing

Publication Analysis

Top Keywords

glycine receptor
16
parenterally administered
8
receptor antagonism
8
forebrain ischemia
8
acea-1021 acea-1031
8
glycine
7
receptor
5
vivo models
4
cerebral
4
models cerebral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!