Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Restenosis after coronary angioplasty might be prevented by locally delivered gene therapy in conjunction with percutaneous transluminal coronary angioplasty (PTCA), since this approach should provide a sustained source of therapeutic protein within the dilated lesion. However, the potential application of gene therapy is limited by the technical barrier of efficiently transferring genes to vascular cells.
Methods: We used cultured coronary smooth muscle cells of human, porcine, and canine origin to evaluate three methods of gene transfer: recombinant adenovirus, liposomal complexes (Lipofectin), and Lipofectin supplemented with hemagglutinin. We then compared Lipofectin- and adenovirus-mediated direct gene transfer in canine and porcine coronary arteries.
Results: The lipofection of cultured smooth muscle cells was enhanced by adding hemagglutinin, yielding luciferase levels that were 631-fold (human), ninefold (porcine), and sevenfold (canine) higher than with Lipofectin alone. However, the recombinant adenovirus directed even higher levels of gene expression, yielding luciferase levels that were 113,000-fold (human), 450-fold (porcine), and 230-fold (canine) higher than with Lipofectin alone. After percutaneous transluminal local delivery to intact canine coronary arteries, the adenovirus produced 55 times more luciferase than did Lipofectin. In living porcine coronary arteries, adenovirus produced 95 times more luciferase than did Lipofectin.
Conclusion: Recombinant adenovirus produces far more recombinant protein than does Lipofectin after percutaneous transluminal direct gene transfer to canine and porcine coronary arteries. Adenoviral vectors may therefore prove useful in evaluating the potential of gene therapy in large animal models of coronary restenosis.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!