A semi-empirical theoretical model of oxygen transfer is used to predict the rates of oxygen transfer to blood in hollow fiber membrane oxygenators over a wide range of inlet conditions. The predicted oxygen transfer rates are based on performance of the devices with water, which is more cost effective and easier to handle than blood for in vitro evaluations. Water experiments were conducted at three different flow rates to evaluate oxygen transfer performance in three commercially available membrane oxygenators. Data obtained from these experiments were used in a computer model to predict the rate of oxygen transfer to bovine blood at specified inlet conditions. Blood experiments were conducted at three different flow rates at a wide variety of inlet conditions, including different pH levels, hemoglobin concentrations, and oxyhemoglobin saturations for the three types of oxygenators. The measured and predicted oxygen transfer rates are closely correlated, which suggests that we have an accurate, reliable method for predicting oxygen transfer in hollow fiber membrane lungs.
Download full-text PDF |
Source |
---|
BMJ
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Centre for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
Objective: To test the hypothesis that a freeze-all strategy would increase the chance of live birth compared with fresh embryo transfer in women with low prognosis for in vitro fertilisation (IVF) treatment.
Design: Pragmatic, multicentre, randomised controlled trial.
Setting: Nine academic fertility centres in China.
J Hazard Mater
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:
Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO/CuO heterogeneous catalysts with rutile (R-TiO) and anatase (A-TiO) phases and reveals that R-TiO is an active crystal phase with high nitrate reduction performance.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany. Electronic address:
The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China. Electronic address:
In the single-stage partial nitritation-anammox process for high-ammonium wastewater treatment, the presence of sufficient biomass with high activity is essential. This study developed an innovative airlift inner-circulation partition bioreactor (AIPBR) with a dual-cylinder structure. During the 362 days' operation, the AIPBR exhibited robust and stable nitrogen removal performance under diverse influent ammonium spanning from 300 to 1800 mg N/L.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:
The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!