Photoelectron imaging (photoelectron emission microscopy, PEM or PEEM) is a promising high resolution surface-sensitive technique for biophysical studies. At present, image quality is often limited by the underlying substrate. For photoelectron imaging, the substrate must be electrically conductive, low in electron emission, and relatively flat. A number of conductive substrate materials with relatively low electron emission were examined for surface roughness. Low angle, unidirectional shadowing of the specimens followed by photoelectron microscopy was found to be an effective way to test the quality of substrate surfaces. Optimal results were obtained by depositing approximately 0.1 nm of platinum-palladium (80:20) at an angle of 3 degrees. Among potential substrates for photoelectron imaging, silicon and evaporated chromium surfaces were found to be much smoother than evaporated magnesium fluoride, which initially appeared promising because of its very low electron emission. The best images were obtained with a chromium substrate coated with a thin layer of dextran derivatized with spermidine, which facilitated the spreading and adhesion of biomolecules to the surfaces. Making use of this substrate, improved photoelectron images are reported for tobacco mosaic virus particles and DNA-recA complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225579PMC
http://dx.doi.org/10.1016/S0006-3495(94)80687-3DOI Listing

Publication Analysis

Top Keywords

photoelectron imaging
16
low electron
12
electron emission
12
low angle
8
photoelectron
7
substrate
6
low
5
imaging viruses
4
viruses dna
4
dna evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!