In Zimbabwe, female Chiromantis xerampelina construct spherical foam nests that are suspended above temporary water. The nests average 624 ml in volume and contain 854 eggs. The 1.7 mm ova have exceptionally thin jelly capsules and are dispersed in the foamy core of the nest, which is surrounded by a layer of eggless foam. At 25 degrees C, each embryo requires 3.5 days to reach hatching at developmental stage 22, during which it consumes 30 microliters of oxygen. After hatching, each larva remains in the nest for 2 more days and consumes a further 123 microliters of oxygen. The fresh foam contains 77% air, which is sufficient to supply all of the oxygen requirements of the embryos until well after they hatch. Therefore, the size of the egg mass is not limited by oxygen availability as it is in many other anurans. Oxygen also diffuses into the nest from the atmosphere, but the rate is severely restricted by the wet foam, despite the presence of bubbles. Drying of the outer layer of foam greatly increases its oxygen conductance, but the larvae remain in the inner core of wet foam, where they compete for oxygen at the periphery. With further drying of the nest, the wet foam diminishes in volume and concentrates the larvae at a time when their oxygen demands are approaching the maximum. Oxygen pressures within the wet foam drop below 10 kPa and oxygen uptake by the larvae becomes progressively limited, possibly stimulating their emergence from the nest. The delay between hatching and escape from the nest permits the larvae to grow and mature to a stage at which all of the clutch can emerge simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.197.1.31DOI Listing

Publication Analysis

Top Keywords

wet foam
16
oxygen
10
foam
9
foam nests
8
chiromantis xerampelina
8
microliters oxygen
8
nest
6
embryonic larval
4
larval respiration
4
respiration arboreal
4

Similar Publications

The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented.

View Article and Find Full Text PDF

Effect of crosslinker length in CNF foams for oil recovery and sustainable agriculture.

Carbohydr Polym

March 2025

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada. Electronic address:

Chemically crosslinked foams possess good wet mechanical stability, and they are promising systems for applications in oil recovery, water treatment, energy storage, etc. However, reports on the effect of crosslinker length on the physical properties of the foam are scarce. Various cellulose nanofiber (CNF) foams (denoted as CPM) were prepared using different molecular weights dicarboxylated-PEG crosslinkers via the esterification reaction.

View Article and Find Full Text PDF

The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.

View Article and Find Full Text PDF

Cellulose nanofiber-created air barrier enabling closed-cell foams prepared via oven-drying.

Carbohydr Polym

March 2025

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:

Cellulose foams are renewable and biodegradable materials that are promising substitutes for plastic foams. However, the scale-up fabrication of cellulose foams is severely hindered by technological complexity and cost- and time-consuming drying processes. Here, we developed a facile and robust method to fabricate cellulose foams via oven-drying following surfactant-assisted mechanical foaming of cellulose nanofibers (CNFs).

View Article and Find Full Text PDF

Fabrication of nanocellulose-based high-mechanical and super-hydrophobic xerogels for speedy oil absorbents.

Carbohydr Polym

March 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Cellulose-based porous materials are promising for various fields and preferred for sustainable development. However, the low mechanical properties and high hydrophilicity of cellulose-based xerogels had a direct influence on their application in oil absorption. To address the challenge, an environmentally friendly and economical method for synthesizing MTMS/C0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!