A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolution of transthyretin in marsupials. | LitMetric

Evolution of transthyretin in marsupials.

Eur J Biochem

Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia.

Published: January 1995

The evolution of the expression and the structure of the gene for transthyretin, a thyroxine-binding plasma protein formerly called prealbumin, was studied in three marsupial species: the South American polyprotodont Monodelphis domestica, the Australian polyprotodont Sminthopsis macroura and the Australian diprotodont Petaurus breviceps. The transthyretin gene was found to be expressed in the choroid plexus of all three species. In liver it was expressed in P. breviceps and in M. domestica, but not in S. macroura. This, together with previous studies [Richardson, S. J., Bradley, A. J., Duan, W., Wettenhall, R. E. H., Harms, P. J., Babon, J. J., Southwell, B. R., Nicol, S., Donnellan, S. C. & Schreiber, G. (1994) Am. J. Physiol. 266, R1359-R1370], suggests the independent evolution of transthyretin synthesis in the liver of the American Polyprotodonta and the Australian Diprotodonta. The results obtained from cloning and sequencing of the cDNA for transthyretin from the three species suggested that, in the evolution of the structure of transthyretin in vertebrates, marsupial transthyretin structures are intermediate between bird/reptile and eutherian transthyretin structures. In marsupials, as in birds and reptiles, a hydrophobic tripeptide beginning with valine and ending with histidine was found in transthyretin at a position which has been identified in eutherians as the border between exon 1 and intron 1. In humans, rats and mice, the nine nucleotides, coding for this tripeptide in marsupials/reptiles/birds, are found at the 5' end of intron 1. They are no longer present in mature transthyretin mRNA. This results in a change in character of the N-termini of the subunits of transthyretin from hydrophobic to hydrophilic. This change might affect the accessibility of the thyroxine-binding site in the central channel of transthyretin, since, at least in humans, the N-termini of the subunits of transthyretin are located in the vicinity of the channel entrance [Hamilton, J. A., Steinrauf, L. K., Braden, B. C., Liepnieks, J., Benson, M. D., Holmgren, G., Sandgren, O. & Steen, L. (1993) J. Biol. Chem. 268, 2416-2424].

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1995.tb20402.xDOI Listing

Publication Analysis

Top Keywords

transthyretin
12
evolution transthyretin
8
three species
8
transthyretin structures
8
n-termini subunits
8
subunits transthyretin
8
evolution
4
transthyretin marsupials
4
marsupials evolution
4
evolution expression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!