Copper oxide powder administered in the form of two experimentally produced sustained-release rumen boluses significantly increased blood and liver copper concentrations in growing sheep. It was estimated that 7% of the copper released was stored in the liver. In two farm observation trials administration of two standard production boluses significantly increased blood copper concentrations in out-wintered suckler cows during late pregnancy and early lactation, and in growing cattle at grass in the summer over periods of at least 170 and 123 days, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0007-1935(94)80038-3 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, McGill University, Montréal, Québec H3A 0G4, Canada.
Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322.
Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.
View Article and Find Full Text PDFTrends Chem
November 2024
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States.
BURP domain peptide cyclases, or BpCs (an abbreviation we recommend in this opinion), are an emerging class of copper enzymes which catalyze the oxidative macrocyclization of peptides in plants. A close examination of their novel protein fold, along with the unique dicopper active site that meticulously controls crosslinking within peptides, highlights how nature exploits intricate mechanistic strategies to achieve diverse functionalities. Here, we summarize recent discoveries regarding the sequence, structure, function, and proposed chemistry of BpCs.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
Copper is ubiquitous as a structural material, and as a reagent in (bio)chemical transformations. A vast number of chemical reactions rely on the near-inevitable preference of copper for positive oxidation states to make useful compounds. Here we show this electronic paradigm can be subverted in a stable compound with a copper-magnesium bond, which conforms to the formal oxidation state of Cu(-I).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!