The nucleoside AICAriboside (5-amino-4-imidazolecarboxamide riboside) has been shown to inhibit glycolysis in isolated rat hepatocytes [Vincent, Bontemps and Van den Berghe (1992) Biochem. J. 281, 267-272]. The effect is mediated by AICA-ribotide (ZMP), the product of the phosphorylation of AICA-riboside by adenosine kinase. To assess the cell-type specificity of the effect, studies were conducted in rabbit cardiomyocytes, human erythrocytes and rat hepatoma FTO-2B cells. AICA-riboside had no effect on glycolysis in cardiomyocytes, and a slight stimulatory effect in erythrocytes, but inhibited glycolysis by 65% at 250 microM concentration in FTO-2B cells, although only when tissue-culture medium was replaced by Krebs-Ringer bicarbonate buffer. At 500 microM AICAriboside, ZMP remained undetectable in cardiomyocytes, but reached 0.65 mM in erythrocytes and 5 mM in FTO-2B cells. In the latter, AICAriboside provoked up to 2-fold elevations of glucose 6-phosphate and fructose 6-phosphate, accompanied by a decrease in fructose 1,6-bisphosphate. This indicated inhibition of 6-phosphofructo-1-kinase (PFK-1). Accordingly, in FTO-2B cell-free extracts, the activity of PFK-1, measured under physiological conditions, was inhibited by approx. 70% by 5 mM ZMP. ZMP had a less pronounced effect on the activity of PFK-1 in normal rat liver; it did not influence the activity of PFK-1 in rat muscle, rabbit heart and human erythrocytes. It is concluded that the inhibitory effect of AICAriboside on glycolysis is dependent on both (1) the capacity of the cells to accumulate ZMP and (2) the presence of target enzymes which are sensitive to ZMP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1136345 | PMC |
http://dx.doi.org/10.1042/bj3050913 | DOI Listing |
PLoS Pathog
January 2025
LPHI, UMR 5294 CNRS/UM-UA15 Inserm, Université de Montpellier, Montpellier, France.
A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.
View Article and Find Full Text PDFBackground: Due to environmental hypoxia on the high-altitude local residents often exhibit a compensative increase in hemoglobin concentration to maintain the body's oxygen supply. In certain people, the number of red blood cells continues to grow, resulting in high altitude polycythemia (HAPC) which is characterized by headache, disorientation, sleeplessness, and bone discomfort. HAPC is often associated with multiple complications, of which lower extremity arteriosclerosis obliterans (LEASO) is rare.
View Article and Find Full Text PDFBackground: Transfusion-associated hypotension (TAH) is characterized by the abrupt onset of hypotension immediately after the start of transfusion and usually resolves when transfusion ceases. The pathogenesis of TAH is not yet fully understood.
Methods: A 36-year-old woman underwent exploratory laparotomy and cesarean section due to cervical squamous cell carcinoma.
Turk J Pediatr
December 2024
Department of Pediatrics, Nilratan Sircar Medical College and Hospital, Kolkata, West Bengal, India.
Objectives: To evaluate the role of serum procalcitonin (PCT) as a diagnostic tool to differentiate bacterial sepsis from flare-ups during febrile episodes in children with known rheumatic disorders compared to other inflammatory markers like C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR).
Methods: Previously diagnosed patients with known rheumatic disorders presenting in emergency or outpatient departments with febrile episodes were included in the study. Blood samples were collected upon admission to test for signs of infection, including serum PCT levels with routine laboratory and radiological tests.
PLoS Pathog
January 2025
Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!