The activity of pyruvate dehydrogenase (PDHC), a key enzyme complex in the oxidative disposal of glucose, was measured after an oral glucose load in the heart, liver, quadriceps muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) of gold-thioglucose (GTG)-obese mice at different stages during the development of obesity and in age-matched controls. Significant responses to the glucose load were seen 30 min post-gavage in heart, WAT and BAT of control mice but no change was observed in quadriceps muscle. The increase in activity of the active form of PDHC (PDHCa) in response to glucose in heart was reduced 2 weeks after the induction of GTG-obesity with no response in 5 or 10 week obese mice. A 2-3-fold increase in the PDHCa response in both WAT and BAT of 2 week obese mice was absent in 5 and 10 week obese animals. Basal PDHCa activity in quadriceps muscle was increased in 2 week obese mice but subsequently returned to control levels as obesity progressed. The glucose load produced no change in the activity of PDHCa in quadriceps muscle of obese mice. These results demonstrate that changes in the capacity for oxidative glucose disposal in different tissues, as indicated by changes in PDHCa activity, may contribute to glucose-intolerance and insulin-resistance in GTG-obese mice and that the response of the PDHC to insulin during the development of obesity varies in different tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1136331PMC
http://dx.doi.org/10.1042/bj3050811DOI Listing

Publication Analysis

Top Keywords

glucose load
16
quadriceps muscle
16
week obese
16
obese mice
16
development obesity
12
pyruvate dehydrogenase
8
mice
8
adipose tissue
8
gtg-obese mice
8
wat bat
8

Similar Publications

This narrative review examines the dynamic interplay between carbohydrate intake and diabetes medications, highlighting their combined molecular and clinical effects on glycemic control. Carbohydrates, a primary energy source, significantly influence postprandial glucose regulation and necessitate careful coordination with pharmacological therapies, including insulin, metformin, glucagon-like peptide (GLP-1) receptor agonists, and sodium-glucose cotransporter-2 (SGLT2) inhibitors. Low-glycemic-index (GI) foods enhance insulin sensitivity, stabilize glycemic variability, and optimize medication efficacy, while high-GI foods exacerbate glycemic excursions and insulin resistance.

View Article and Find Full Text PDF

Purpose: Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study.

View Article and Find Full Text PDF

Purpose: A paradoxical increase in GH after oral glucose load (GH-Par) characterizes about one-third of acromegaly patients and is associated with a better response to first-generation somatostatin receptor ligands (fg-SRLs). Pasireotide is typically considered as a second-/third-line treatment. Here, we investigated the predictive role of GH-Par in pasireotide response and adverse event development.

View Article and Find Full Text PDF

Dietary glycemic and insulin indices with the risk of osteoporosis: results from the Iranian teachers cohort study.

Front Nutr

January 2025

Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Background: Osteoporosis is a chronic condition characterized by reduced bone strength and an elevated risk of fractures. The influence of diet and glucose metabolism on bone health and the development of osteoporosis has been an area of interest. This study aimed to investigate the potential association between dietary glycemic index (DGI), dietary glycemic load (DGL), dietary insulin index (DII), dietary insulin load (DIL), and the odds of osteoporosis among Iranian adults.

View Article and Find Full Text PDF

Maximizing saccharification efficiency of lignocellulose and minimizing the production costs associated with enzyme requirements are crucial for sustainable biofuel production. This study presents a novel semi-fed-batch saccharification method that uses a co-culture of and strain A9 to efficiently break down high solid-loading lignocellulosic biomass without the need for any external enzymes. This method optimizes saccharification efficiency and enhances glucose production from alkaline-treated rice straw, a representative lignocellulosic biomass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!