Activation of dopamine D1 receptors or alpha 1 adrenoceptors is not involved in the EEG effect of nicotine in rats.

Naunyn Schmiedebergs Arch Pharmacol

Institute of Pharmacology and Toxicology, Faculty of Pharmacy, University of Marburg, Germany.

Published: October 1994

Based on previous own EEG-studies and behavioural studies of other authors, it has been claimed recently that D1 receptors are involved in addictive properties of drugs. It seemed, therefore, of interest to study whether nicotine produces D1-characteristic EEG alterations in rats. EEG was recorded in non-anesthetized, freely moving rats, transmitted telemetrically and underwent power spectral analysis. Nicotine (0.1, 0.2, 0.4 mg/kg s.c.) produced a desynchronization in the EEG and a decrease of power in all of the frequency bands (delta, theta, alpha 1, alpha 2, beta 1) except in beta 2. With regard to behaviour, an increase of locomotor activity and some discontinuous sniffing was manifest. The effect of nicotine (0.2 mg/kg) was not antagonized by blockade of dopamine D1 receptors by SCH 23390 (0.1 mg/kg s.c., 30 min before nicotine), although this drug by itself increased the power in most of the frequency bands. Prazosine (0.2 mg/kg i.p.), a selective antagonist at alpha 1 adrenoceptors, by itself increased the power in all of the frequency bands, but also failed to antagonize the effects of nicotine (0.2 mg/kg). In contrast, the blocker of nicotinic cholinoceptors mecamylamine (1 mg/kg i.p.) was effective in antagonizing the action of nicotine on the EEG. The results suggest that in nicotine-mediated desynchronization and decrease of power in the EEG, the activation of dopamine D1 or alpha 1 adrenoceptors is not involved.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00178949DOI Listing

Publication Analysis

Top Keywords

alpha adrenoceptors
12
nicotine mg/kg
12
power frequency
12
frequency bands
12
activation dopamine
8
dopamine receptors
8
adrenoceptors involved
8
decrease power
8
increased power
8
nicotine
7

Similar Publications

Objective: This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.

Methods: This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction.

View Article and Find Full Text PDF

Activation of locus coeruleus noradrenergic neurons rapidly drives homeostatic sleep pressure.

Sci Adv

January 2025

Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.

Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC).

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Purpose: Resting beat-to-beat blood pressure variability is a strong predictor of cardiovascular events and mortality. However, its underlying mechanisms remain incompletely understood. Given that the sympathetic nervous system plays a pivotal role in cardiovascular regulation, we hypothesized that alpha-1 adrenergic receptors (the main sympathetic receptor controlling peripheral vasoconstriction) may contribute to resting beat-to-beat blood pressure variability.

View Article and Find Full Text PDF

NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer.

Arch Med Res

January 2025

Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:

Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!