Brainstem auditory evoked responses were recorded longitudinally from 11 neonatal baboons (Papio hamadryas), 6 of which were preterm. Recordings were made in unsedated animals from day 161 to day 362 after conception (term = 182 days). The pattern of development of both waveform morphology and of wave latency was consistent with that seen in the human neonate, with a rapid maturation of the response during the perinatal period, and then a slower development to adult values. Brainstem conduction time was measured from the wave I to wave IV interval, and this demonstrated a similar pattern, with a rapid decrease in latency up to term, and then decreasing more slowly to reach adult values by 4 months of age in the baboon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0165-3806(94)90161-9 | DOI Listing |
Braz J Otorhinolaryngol
January 2025
Tibet University, Medical College, Lhasa, China. Electronic address:
Objective: High altitude hypobaric hypoxia can induce hearing impairment and hearing acclimatization, but few studies have been performed to decipher the potential transition between the two states. To decipher transition-related circular RNAs (circRNAs)-microRNAs (miRNAs)-messenger RNA (mRNAs) regulatory network.
Methods: Wistar rats were airlifted from plain to high altitude and maintained for 30 days and 60 days.
PLoS One
January 2025
Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany.
The inferior colliculus is a key nucleus in the central auditory pathway, integrating acoustic stimuli from both cochleae and playing a crucial role in sound localization. It undergoes functional and structural development in childhood and experiences age-related degeneration later in life, contributing to the progression of age-related hearing loss. This study aims at finding out, whether the volume of the human inferior colliculus can be determined by analysis of routinely performed MRIs and whether there is any age-related variation.
View Article and Find Full Text PDFJ Ginseng Res
January 2025
Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea.
Background: Korean Red Ginseng and ginsenosides have been studied for their efficacy against various diseases, including those related to aging. However, most aging studies use D-galactose to induce aging, which often does not accurately represent natural aging. This study aimed to verify improvements in auditory, cognitive, and liver function through administering red ginseng to an 18-month-old naturally aging mouse model.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, 44106, USA.
Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China.
Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!