Several biochemical parameters that reflect the presence of excess levels of reactive oxygen species were modulated in the brains of rats exposed acutely or subchronically to ethanol. These parameters included depression of cytosolic glutathione (GSH) concentration and of glutamine synthetase levels. However, using these indices, there was a significant difference in susceptibility to ethanol in different brain regions. After dietary exposure to ethanol for 12 days, these indices were selectively depressed in the striatum but not in the cerebral cortex or cerebellum. Eighteen hours after a single acute dose of ethanol (4.5 g/kg body wt), the striatum was also the only one of these areas in which proteolytic activity was elevated by ethanol treatment. Two injections of acetaldehyde (300 mg/kg), given 18 and 2 hr prior to tissue preparation, caused a specific reduction of glutamine synthetase in the striatum and a decrease of GSH levels in both striatum and cerebellum. Taken together, the results suggest a distinctive vulnerability of the striatum to ethanol-promoted oxidative events. Rather than ethanol exerting effects directly, the metabolite acetaldehyde may be the primary agent responsible for these changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-2952(94)00442-o | DOI Listing |
Alzheimers Res Ther
January 2025
Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010010, China.
Nanoselenium shows potential trends in improving plant health and food quality. In this study, different concentrations of nanoselenium were sprayed on the leaves of alfalfa. Compared to the control, nanoselenium (100 mg·L) significantly increased SeMet and SeMeCys contents in the roots, stems, and leaves of alfalfa.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
Legumes are well-known for symbiotic nitrogen fixation, whereas associative nitrogen fixation for nonlegume plants needs more attention. Most associative nitrogen-fixing bacteria are applied in their original plant species and need further study for broad adaptation. Additionally, if isolated nitrogen-fixing bacteria could function under fertilizer conditions, it is often ignored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!