The metabolism of cis-epoxyeicosatrienoic acids (EETs), methyl cis-epoxyeicosatrienoates, and cis-epoxyeicosanoic acids by cytosolic epoxide hydrolase was studied to identify substrate structural features important for stereoselective metabolism and chiral diol formation. 14(R), 15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET, the predominant enantiomers present endogenously in rat organs, were metabolized at substantially higher rates than their antipodes. With the exception of 8(R),9(S)-EET (Km = 41 microM), differences in enantiomer hydration rates appear to be caused by Km-independent factors since the apparent Km values for the enantiomers of 14,15-, 11,12-, and 8(S),9(R)-EET were similar (between 3 and 5 microM). Chiral analysis of the diols resulting from enzymatic hydration of homochiral EETs showed that the regio and/or stereochemistry of water addition was EET regioisomer dependent. For the 11,12-EET enantiomers, water addition was nonregioselective; whereas, with both 8,9-EET antipodes water addition occurred predominantly at C9. Importantly, for 14,15-EET the regiochemistry of water addition was enantiomer-dependent. Only with 14(R),15(S)-EET did enzymatic hydration result in regiospecific addition at C15. Hence, enantioselective EET hydration is determined, principally, by enantiomer specific differences in rates of catalytic turnover and/or substrate binding parameters. On the other hand, the chirality of the diol products is determined by EET enantiomer-dependent differences in the regiochemistry of enzymatic oxirane cleavage and water addition. Esterification resulted in an overall reduction in the rates of epoxide hydration for all three EET-methyl esters (59, 89, and 68% of the EET rate for 8,9-, 11,12-, and 14,15-EET-methyl ester, respectively) and in the loss of regioselectivity during methyl 8(S),9(R)-EET oxirane cleavage. Catalytic EET hydrogenation reduced the rates of EET hydration (56, 45, and 23% of the EET rates for 8,9-, 11,12-, and 14,15-epoxyeicosanoic acids, respectively). Compared to 14,15-EET, enzyme catalyzed hydration of 14,15-epoxyeicosanoic acid was less regioselective and yielded products with a substantially lower chiral purity. Based on these data, as well as on the documentation of 14(R),15(R)-dihydroxyeicosatrienoic acid as an endogenous constituent of rat urine we concluded that: (1) cytosolic epoxide hydrolase plays a significant role in the regio- and stereoselective metabolism of endogenous EETs; (2) differences in the affinities and/or turnover rates of the enzyme for the individual EET antipodes may be responsible for enantioselective EET metabolism; and (3) for 14,15- and 8,9-EET, regioselective and/or enantioselective oxirane water addition is responsible for asymmetric diol formation.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.1995.1059 | DOI Listing |
Malar J
January 2025
Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
Background: Members of the Anopheles gambiae complex are major malaria vectors in sub-Saharan Africa. Their larval stages inhabit a variety of aquatic habitats in which, under natural circumstances, they are preyed upon by different taxa of aquatic macroinvertebrate predators. Understanding the potential impact of predators on malaria vector larval population dynamics is important for enabling integrated local mosquito control programmes with a stronger emphasis on biocontrol approaches.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, 600127, India.
The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.
View Article and Find Full Text PDFSci Rep
January 2025
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.
View Article and Find Full Text PDFEur J Hosp Pharm
January 2025
Pharmacy Department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
Objectives: Acceleration of the haemostasis process after dermatological surgery predominantly relies on mechanical methods, such as the use of sutures or staples. To our knowledge, there is currently no commercialised haemostatic agent for this specific application. Due to the protein precipitation properties of the 50% (w/v) aluminium chloride hexahydrate solution, its physicochemical stability and maintenance of sterility over a 6 month period were assessed.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Informatics and Information Science, University of Konstanz, Germany; Faculty of Information Technology, Monash University, Australia. Electronic address:
Microcystins (MCs) occur frequently during cyanobacterial blooms worldwide, representing a group of currently about 300 known MC congeners, which are structurally highly similar. Human exposure to MCs via contaminated water, food or dietary supplements can lead to severe intoxications with ensuing high morbidity and in some cases mortality. Currently, one MC congener (MC-LR) is almost exclusively considered for risk assessment (RA) by the WHO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!