Intraocular lenses for pediatric implantation: biomaterials, designs, and sizing.

J Cataract Refract Surg

N. Edgar Miles Center for Pediatric Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston 29425-2236.

Published: November 1994

Posterior chamber intraocular lenses (IOLs) are being implanted in children with increasing frequency. However, with rare exceptions, only IOLs designed for adults are currently available. These lenses may be difficult to insert into small eyes. Since the pediatric crystalline lens is smaller than that of adults and because the capsular bag does not continue to grow after lensectomy, it is worthwhile to determine the biomaterials, designs, and sizes that may be appropriate for pediatric implantation. In a study of 50 pediatric eyes obtained postmortem, we have documented an estimated growth curve for the developing crystalline lens between birth and 16 years of age. Ninety percent of crystalline lens growth occurs during the first two years of life. Based on these data and this study using the Miyake posterior view analysis of implanted standard and prototype IOLs, we recommend the following: Clinical trials of capsular IOLs, downsized to approximately 10.0 mm diameter, are appropriate for children under two years of age. Capsular IOLs are defined as flexible open-loop, one-piece, all poly(methyl methacrylate), modified C-loop designs made specifically for in-the-bag placement. Because the rapid growth phase of the lens is complete by the age of two, we believe that downsizing the IOL is not necessary after this age unless axial length measurements indicate an unusually small eye. Standard flexible 12.0 mm to 12.5 mm diameter capsular IOLs can be safely implanted. Such lenses could be tolerated throughout life, obviating the need for later IOL exchange.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0886-3350(13)80643-8DOI Listing

Publication Analysis

Top Keywords

crystalline lens
12
capsular iols
12
intraocular lenses
8
pediatric implantation
8
biomaterials designs
8
years age
8
iols
6
pediatric
4
lenses pediatric
4
implantation biomaterials
4

Similar Publications

Exploiting photopolymerization to modulate liquid crystalline network actuation.

Soft Matter

January 2025

LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.

Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparation technique involves the photopolymerization of an aligned layer of reactive mesogens.

View Article and Find Full Text PDF

Purpose: Severely myopic eyes have been associated with high posterior capsule opacification (PCO) incidence. Although it has been reported that myopic eyes have weaker or more delayed capsule adhesion than emmetropic eyes, it is unclear whether/how dioptric power and posterior curvature of IOLs affect IOLs' affinity for the posterior lens capsule (PLC) and their PCO potential.

Methods: To investigate this, acrylic foldable IOLs with increasing dioptric power of 6.

View Article and Find Full Text PDF

An intraocular lens (IOL) replaces the natural crystalline lens during cataract surgery, and although the vast majority of implants have simple optics, "advanced technology" IOLs have multifocal and extended depth of focus (EDOF) properties. Optical concepts are evaluated here, with image contrast, focal range, and unwanted visual phenomena being the primary concerns. Visual phenomena with earlier bifocal diffractive lenses led to alternative diffractive designs (trifocals, etc.

View Article and Find Full Text PDF

Refractive error maps: A predictive tool for refractive error progression.

Ophthalmic Physiol Opt

January 2025

Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK.

Purpose: To investigate the influence of axial length on different ocular parameters and create a predictive tool for refractive error progression.

Methods: Two eye models were used to simulate refractive errors, namely the Liou-Brennan and the Goncharov-Dainty. Both models were simulated using Zemax OpticStudio.

View Article and Find Full Text PDF

Cataracts are significant causes of blindness, closely linked to prolonged hypercholesterolemia. While saffron has the potential for eye health, its effects on lens lesions remain understudied. This study aimed to investigate the effect of saffron on the lens changes in atherosclerotic-induced New Zealand white rabbits (NZWR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!