A multi-ion permeation mechanism in neuronal background chloride channels.

J Gen Physiol

Department of Physiology and Biophysics, University of Miami, Florida 33101.

Published: October 1994

Unitary current/voltage relationships of background Cl channels of rat hippocampal neurons were determined for varied gradients and absolute concentrations of NaCl. The channels revealed permeabilities for both Cl and Na ions. A hyperlinear increase of unitary conductance, observed for a symmetrical increase of salt concentration from 300 and 600 mM, indicated a multi-ion permeation mechanism. A variety of kinetic models of permeation were tested against the experimental current/voltage relationships. Models involving a pore occupied by mixed complexes of up to five ions were necessary to reproduce all measurements. A minimal model included four equilibrium states and four rate-limiting transitions, such that the empty pore accepts first an anion and then can acquire one or two cation/anion pairs. Three transport cycles are formed: a slow anion cycle (between the empty and single-anion states), a slow cation cycle (between the one- and three-ion states), and a fast anion cycle (between the three- and five-ion states). Thus, permeant anions are required for cation permeation, and several bound anions and cations promote a high rate of anion permeation. The optimized free-energy and electrical charge parameters yielded a self-consistent molecular interpretation, which can account for the particular order in which the pore accepts ions from the solutions. Although the model describes the mixed anion/cation permeability of the channel observed at elevated concentrations, it predicts a high selectivity for Cl anion at physiological ionic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229234PMC
http://dx.doi.org/10.1085/jgp.104.4.725DOI Listing

Publication Analysis

Top Keywords

multi-ion permeation
8
permeation mechanism
8
current/voltage relationships
8
pore accepts
8
anion cycle
8
anion
5
mechanism neuronal
4
neuronal background
4
background chloride
4
chloride channels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!