Previously we proposed a transmembrane model of the FhuA receptor protein in the outer membrane of Escherichia coli. Removal of the largest loop at the cell surface converted the FhuA transport protein into an open channel and rendered cells resistant to the FhuA-specific phages T1, T5, and phi 80 and to colicin M. In the present study we employed acetylated hexapeptide amides covering the entire surface loop to investigate binding of the phages and of colicin M. Competitive peptide mapping proved to be a powerful technique to uncover three ligand binding sites within a region of 34 amino acid residues. Hexapeptides derived from three specific regions of the surface loop inhibited infection of cells by the phages and killing by colicin M. Two of these regions were common among all four FhuA ligands. Electron microscopy of phage T5 revealed that one inhibitory peptide triggered a strong conformational change leading to the release of DNA from the phage head. These results suggest that the FhuA gating loop is the target for specific binding of phages T1, T5, and phi 80 and colicin M.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC176645PMC
http://dx.doi.org/10.1128/jb.177.3.694-698.1995DOI Listing

Publication Analysis

Top Keywords

phages phi
12
phi colicin
12
binding sites
8
competitive peptide
8
peptide mapping
8
gating loop
8
surface loop
8
binding phages
8
phages
5
colicin
5

Similar Publications

Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.

iScience

January 2025

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.

Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.

View Article and Find Full Text PDF

Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.

View Article and Find Full Text PDF

A novel framework for phage-host prediction via logical probability theory and network sparsification.

Brief Bioinform

November 2024

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.

Bacterial resistance has emerged as one of the greatest threats to human health, and phages have shown tremendous potential in addressing the issue of drug-resistant bacteria by lysing host. The identification of phage-host interactions (PHI) is crucial for addressing bacterial infections. Some existing computational methods for predicting PHI are suboptimal in terms of prediction efficiency due to the limited types of available information.

View Article and Find Full Text PDF

Magnetic Carbon Bead-Based Concentration Method for SARS-CoV-2 Detection in Wastewater.

Food Environ Virol

December 2024

Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.

Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e.

View Article and Find Full Text PDF

The rise, fall, and resurgence of phage therapy for urinary tract infection.

EcoSal Plus

December 2024

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.

In the face of rising antimicrobial resistance, bacteriophage therapy, also known as phage therapy, is seeing a resurgence as a potential treatment for bacterial infections including urinary tract infection (UTI). Primarily caused by uropathogenic , the 400 million UTI cases annually are major global healthcare burdens and a primary cause of antibiotic prescriptions in the outpatient setting. Phage therapy has several potential advantages over antibiotics including the ability to disrupt bacterial biofilms and synergize with antimicrobial treatments with minimal side effects or impacts on the microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!