Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The micronucleus assay in human lymphocytes is, at present, frequently used to assess chromosomal damage caused by ionizing radiation or mutagens. Manual scoring of micronuclei (MN) by trained personnel is very time-consuming, tiring work, and the results depend on subjective interpretation of scoring criteria. More objective scoring can be accomplished only if the test can be automated. Furthermore, an automated system allows scoring of large numbers of cells, thereby increasing the statistical significance of the results. This is of special importance for screening programs for low doses of chromosome-damaging agents. In this paper, the first results of our effort to automate the micronucleus assay with an image-analysis system are represented. The method we used is described in detail, and the results are compared to those of other groups. Our system is able to detect 88% of the binucleated lymphocytes on the slides. The procedure consists of a fully automated localization of binucleated cells and counting of the MN within these cells, followed by a simple and fast manual operation in which the false positives are removed. Preliminary measurements for blood samples irradiated with a dose of 1 Gy X-rays indicate that the automated system can find 89% +/- 12% of the micronuclei within the binucleated cells compared to a manual screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.990170203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!