Background: To determine whether liver preservation before transplantation impairs hepatic drug metabolism, hepatic extraction of drugs with different metabolic pathways (fentanyl, morphine, and vecuronium) in isolated rat livers was measured either immediately or after 24 h of hypothermia at 4 degrees C using a standard preservation-reperfusion sequence.
Methods: Isolated rat livers were perfused via the portal vein for 30 min to document initial viability. Test livers (n = 5) were perfused with iced Belzer solution, stored for 24 h at 4 degrees C, and flushed with 6% hetastarch. After hypothermic preservation for 24 h, or in control livers (n = 5) immediately after the 30-min perfusion, livers were perfused single-pass at a constant flow rate with solutions containing fentanyl, morphine, and vecuronium at 37 degrees C. Perfusate and bile samples were obtained at regular intervals for 64 min, after which liver tissue was harvested for analysis. Drug concentrations were measured using radioimmunoassay and gas chromatography. Metabolic capacity of the liver was estimated from the extraction fraction of each drug at steady-state.
Results: After warming to 37 degrees C, preserved livers consumed oxygen and produced bile at rates similar to that of control livers. Hypothermic preservation did not affect extraction of fentanyl and morphine. Vecuronium extraction was initially less in preserved livers, but this difference disappeared as the preserved livers returned to 37 degrees C (< 16 min). Biliary excretion and tissue concentrations of vecuronium were similar in each group.
Conclusions: Hypothermic preservation does not significantly impair extraction of these drugs in this liver preservation model. If these results apply to human liver transplantation, little danger of drug accumulation exists during the early postoperative period if hepatic function is normal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000542-199501000-00030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!