In the lymph nodes of individuals infected with human immunodeficiency virus (HIV), there is evidence that points to three kinds of virus-cell relationships. Virions may be associated with CD4+ lymphocytes that are actively producing virus or may be bound at the surfaces of follicular dendritic cells like other antigens. HIV is also harbored in CD4+ lymphocytes and monocytes/macrophages in a latent form as transcriptionally silenced provirus. To ultimately investigate in vivo these and other HIV-cell interactions that play such critical roles in the persistence of virus, immune dysregulation, and depletion, we have developed an in situ hybridization method that discriminates multiply spliced from singly or unspliced viral transcripts. In this report we describe the method and the results obtained with it in an analysis of the switch from latent to productive infection of chronically infected T lymphocytes in culture. We found with this single-cell technique that there are two subpopulations in the culture, a minor one of productively infected cells and a major one of latently infected cells in which only low levels of viral transcripts terminated close to the 5' end of the viral genome were detected. Shortly after activation of viral gene expression with phorbol ester, transcripts encoding Tat and Rev increase in abundancy in individual latently infected cells and this is followed by increases in and cytoplasmic export of singly or unspliced mRNAs encoding structural proteins. These studies provide insights into the regulation of HIV gene expression from a single-cell perspective and, from that perspective, transcript profiles of productively infected cells as a frame of reference for defining HIV-cell relationships in individual cells in tissue sections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0042-6822(95)80015-8 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFVirol J
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.
Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!