Dust grains in the interstellar medium and the outer Solar System commonly have a coating of water ice, which affects their optical properties and surface chemistry. The thickness of these icy mantles may be determined in part by the extent of photodesorption (photosputtering) by background ultraviolet radiation. But this process is poorly understood, with theoretical estimates of the photodesorption rate spanning several orders of magnitude. Here we report measurements of the absolute ultraviolet photodesorption yield of low-temperature water ice. Our results indicate that the rate of photodesorption is appreciable. In particular, it can account for the absence of icy mantles on grains in diffuse interstellar clouds, it exceeds solar-wind ion erosion and sublimation in the outer Solar System, and it is important in determining the lifetimes of icy mantles in dense molecular clouds.

Download full-text PDF

Source
http://dx.doi.org/10.1038/373405a0DOI Listing

Publication Analysis

Top Keywords

water ice
12
icy mantles
12
low-temperature water
8
outer solar
8
solar system
8
photodesorption
5
photodesorption low-temperature
4
ice interstellar
4
interstellar circumsolar
4
circumsolar grains
4

Similar Publications

Mitigating ice sheets and mountain glaciers melt with geoengineering.

Sci Total Environ

January 2025

Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

The inadequacy of current emission reduction measures necessitates exploring innovative approaches to address the critical issue of ice sheet and mountain glacier melting. Geoengineering emerges as a potential solution to mitigate severe cryospheric changes. This review systematically examines geoengineering techniques tailored to ice sheets and mountain glaciers, analyzing their efficacy, risks, and limitations based on existing literature.

View Article and Find Full Text PDF

A strain positive for the metallo-beta-lactamase gene and resistant to trimethoprim-sulfamethoxazole was unexpectedly isolated from a surveillance rectal swab. The characterization of the strain revealed carriage of a 91 kb integrative and conjugative element (ICE) harboring several resistance determinants [, , , , ∆, , and ], closely related with a group of -type ICEs widespread among and other pseudomonads. Results highlighted the possible spreading of similar elements to , mediating the acquisition of relevant resistances.

View Article and Find Full Text PDF

Unlabelled: Remote polar regions offer unique opportunities and significant challenges for antimicrobial resistance research in a near-pristine environment. While core microbiology techniques continue to have an important role in supporting environmental research, the severe cold climate presents considerable challenges to laboratory research. We explore adaptations required for core bacteriology investigations in polar regions on an unsupported remote expedition c.

View Article and Find Full Text PDF

Crafting Hollow Spheres via Bulk Ice Melting with ppb-Level Gas Sensing Performance.

J Am Chem Soc

January 2025

National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Ice melting, a common yet complex phenomenon, remains incompletely understood. While theoretical studies suggest that preexisting defects in ice generate "off-lattice" water molecules, triggering bulk ice melting, direct experimental evidence of their form has been lacking as the transparent and transient nature of ice poses significant challenges for observation with current techniques. Here, we introduce an ice-melting-induced lyophilization (IMIL) technique that employs graphene-based nanoprobes to replicate and track liquid evolution within melting bulk ice.

View Article and Find Full Text PDF

Objective: To determine the impact of prolonged storage of donor lungs at 10°C of up to 24h on outcome after lung transplantation.

Background: An increasing body of evidence suggests 10°C as the optimal storage temperature for donor lungs. A recent study showed that cold ischemic times can be safely expanded to >12h when lungs are stored at 10°C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!