Response to chemotherapeutic agents in malignant tumors depends on many factors, most of which are as yet unknown. We investigated the correlation between the activation of different oncogenes and protein-kinase-C (PKC) modulation, and the cytotoxicity of some of the most widely used anti-cancer drugs. We transformed the murine keratinocyte cell line PAM 212, with different oncogenes (v-H-ras, v-myc and adenovirus E1a) and a mutant p53 suppressor gene (mp53). The cytotoxic effect of cisplatin (CDDP), doxorubicin (DOX) and vincristine (VCR), together with the concomitant action of modulators of PKC, TPA and staurosporine were evaluated by the crystal-violet method, thymidine incorporation and flow cytometry. We report that (a) the oncogene v-H-ras induces resistance to CDDP (> 50%), DOX (> 25%) and VCR (> 20%); (b) the E1a oncogene induces only resistance to VCR (> 40%) and marked sensitivity to CDDP and DOX; (c) the mp53 oncogene induces more resistance to VCR and insignificant resistance to the other drugs; and (d) activation of PKC by TPA increases the resistance to VCR and DOX in cells transformed by the v-H-ras, while it significantly increases the lethality with CDDP of the E1a-transformed cells. Staurosporine increases the cytoxicity of all the drugs, especially in the E1a-transformed keratinocytes. In the flow-cytometry analysis, the percentage of BUdR incorporation was related to sensitivity to anti-cancer drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.2910600218 | DOI Listing |
Plant Physiol Biochem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:
The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.
View Article and Find Full Text PDFJ Exp Bot
January 2025
National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
Plants deploy cellular Ca2+ elevation as a signal for environmental stress signaling. Extracellular ATP (eATP) is released into the extracellular matrix when cells are wounded. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), a key legume-type lectin receptor, senses and binds eATP and activates Ca2+ signaling.
View Article and Find Full Text PDFJ Exp Bot
January 2025
State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.
Inhibition of jasmonic acid (JA) signaling renders plants more susceptible to biotic stresses. Pathogen infection can induce an increase in JA levels. However, our understanding of the mechanisms mediating pathogen-induced JA accumulation in rice (Oryza sativa) remains limited.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany.
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!