Increased hypothalamic somatostatin expression in mice transgenic for bovine or human GH.

J Neuroendocrinol

Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118.

Published: October 1994

Acute studies of GH removal by hypophysectomy or GH replacement in adult rats have shown that GH has a positive influence on its hypothalamic inhibitory hormone somatostatin (SRIH). The present study was undertaken to assess the effect of lifelong exposure to elevated GH on the development and differentiation of SRIH-producing hypothalamic neurons, including comparison of differing GH levels and heterologous species of GH. Expression of somatostatin peptide and mRNA was evaluated using respective immunocytochemistry and in situ hybridization in brains of transgenic mice bearing constructs of either human (hGH) or bovine (bGH) linked to metallothionein (MT) promoter or bGH linked to phosphoenolpyruvate carboxykinase (PEPCK) promoter. Nontransgenic littermates served as controls. All transgenic constructs resulted in high levels of circulating heterologous GH and significantly elevated body weights. Both bGH levels and body weights were higher in PEPCK-bGH than in MT-bGH mice; mean weights were not different between MT-bGH and MT-hGH mice. Numbers of SRIH-immunoreactive neurons in the hypophysiotropic periventricular nucleus (PeN) of transgenic mice showed a two-fold increase (P < 0.01) relative to control animals; the number of SRIH-positive cells in the medial basal hypothalamus (MBH) was comparable for transgenic and control mice. Total SRIH mRNA in situ hybridization intensity also showed a two-fold increase (P < 0.05) in the PeN of all transgenic mice compared with controls, and was not elevated in the MBH. The higher levels of GH produced in PEPCK-bGH transgenic mice led to greater weight gain, but not to greater SRIH expression than in other GH-transgenic mice, suggesting that the increased SRIH cell number and mRNA in the PeN of MT-GH-transgenic mice may represent a plateau of maximal feedback stimulation. The results indicate that lifelong elevated heterologous GH in mice stimulates hypothalamic SRIH expression markedly. It is not known whether this mechanism is direct or indirect via a mediator of GH such as IGF, but the heterologous GH appears to be specific to these hypophysiotropic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2826.1994.tb00617.xDOI Listing

Publication Analysis

Top Keywords

transgenic mice
16
mice
11
situ hybridization
8
bgh linked
8
body weights
8
pen transgenic
8
two-fold increase
8
srih expression
8
transgenic
7
srih
5

Similar Publications

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder oftentimes associated with abnormal social behaviors and altered sensory responsiveness. It is hypothesized that the inappropriate filtering of sensory stimuli, including olfaction, can lead to aberrant social behavior in FXS. However, previous studies investigating olfaction in animal models of FXS have shown inconsistent results.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is present in a healthy brain at low densities but can be markedly upregulated by excitatory input and by inflammogens. This study evaluated the sensitivity of the PET radioligand [C]-6-methoxy-2-(4-(methylsulfonyl)phenyl)--(thiophen-2-ylmethyl)pyrimidin-4-amine ([C]MC1) to detect COX-2 density in a healthy human brain. The specificity of [C]MC1 was confirmed using lipopolysaccharide-injected rats and transgenic mice expressing the human gene, with 120-min baseline and blocked scans using COX-1 and COX-2 selective agents.

View Article and Find Full Text PDF

Shaking it off: loss of NHE3-mediated calcium reabsorption is compensated by the distal nephron.

Kidney Int

February 2025

Department of Pediatrics, The Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. Electronic address:

Sodium reabsorption is tightly coupled to calcium reabsorption in the proximal tubule via the action of the Na/H exchanger isoform 3 (NHE3). Poulsen et al. provide evidence of reduced proximal calcium reabsorption in kidney tubule-specific NHE3-deficient mice that is compensated distally, unaltered phosphate homeostasis, and NHE3 involvement in the hypocalciuric effect of thiazides.

View Article and Find Full Text PDF

The pathogenesis of Lewy body diseases (LBDs), including Parkinson's disease (PD), involves α-synuclein (α-Syn) aggregation that originates in peripheral organs and spreads to the brain. PD incidence is increased in individuals with chronic renal failure, but the underlying mechanisms remain unknown. Here we observed α-Syn deposits in the kidneys of patients with LBDs and in the kidney and central nervous system of individuals with end-stage renal disease without documented LBDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!