Limbic cortical influences to the vagal input neurones of the solitary tract nucleus.

Neuroreport

Laboratory of Cortico-Visceral Physiology, IP Pavlov Institute of Physiology, St Petersburg, Russia.

Published: September 1994

In acute experiments on cats, electrical stimulation of the anterior limbic cortex was shown to modulate activity of vagal input neurones of the nucleus of the tractus solitarius. In the majority of the solitary tract nucleus neurones the responses induced by electrical stimulation of the vagus were depressed by the stimulation of anterior limbic cortex. Under these conditions the patterns of responses or their latency were changed. Our results are discussed with respect to possible mechanisms for cortical control of sensory transmission in the nucleus of the tractus solitarius.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-199409080-00004DOI Listing

Publication Analysis

Top Keywords

vagal input
8
input neurones
8
solitary tract
8
tract nucleus
8
electrical stimulation
8
stimulation anterior
8
anterior limbic
8
limbic cortex
8
nucleus tractus
8
tractus solitarius
8

Similar Publications

The interplay between hypothalamic and brainstem nuclei in homeostatic control of energy balance.

Behav Brain Res

December 2024

Faculty of Health Sciences, University of Primorska, Izola, Slovenia. Electronic address:

Energy balance and body weight are tightly regulated by homeostatic and hedonic systems of the brain. These systems are ultimately finely tuned by hypothalamic and extrahypothalamic neurocircuitry that modulate feeding and the appetite signalling cascade. The hypothalamus has been extensively researched and its role in homeostatic regulation of energy balance is well established.

View Article and Find Full Text PDF

Neurocardiology: Major mechanisms and effects.

J Electrocardiol

November 2024

Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America.

Neurocardiology is a broad interdisciplinary specialty investigating how the cardiovascular and nervous systems interact. In this brief introductory review, we describe several key aspects of this interaction with specific attention to cardiovascular effects. The review introduces basic anatomy and discusses physiological mechanisms and effects that play crucial roles in the interaction of the cardiovascular and nervous systems, namely: the cardiac neuraxis, the taxonomy of the nervous system, integration of sensory input in the brainstem, influences of the autonomic nervous system (ANS) on heart and vasculature, the neural pathways and functioning of the arterial baroreflex, receptors and ANS effects in the walls of blood vessels, receptors and ANS effects in excitable cells in the heart, ANS effects on heart rate and sympathovagal balance, endo-epicardial inhomogeneity, ANS effects with a balanced vagal and sympathetic stimulation, sympathovagal interaction, arterial baroreflex, baroreflex sensitivity and heart rate variability, arrhythmias and the arterial baroreflex, the cardiopulmonary baroreflex, the exercise pressor reflex, exercise-recovery hysteresis, mental stress, cardiac-cardiac reflexes, the cardiac sympathetic afferent reflex (CSAR), and neuromodulation.

View Article and Find Full Text PDF

The caudal nucleus of the solitary tract (cNTS) in the brainstem serves as a hub for integrating interoceptive cues from diverse sensory pathways. However, the mechanisms by which cNTS neurons transform these signals into behaviors remain debated. We analyzed 18 cNTS-Cre mouse lines and cataloged the dynamics of nine cNTS cell types during feeding.

View Article and Find Full Text PDF

During postnatal life, leptin specifies neuronal inputs to the paraventricular nucleus of the hypothalamus (PVH) and activates agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus. Activity-dependent developmental mechanisms impact refinement of sensory circuits, but whether leptin-mediated postnatal neuronal activity specifies hypothalamic neural projections is largely unexplored. Here, we used chemogenetics to manipulate the activity of AgRP neurons during a discrete postnatal critical period and evaluated the development of AgRP inputs to the PVH and descending efferent outflow to the dorsal vagal complex (DVC).

View Article and Find Full Text PDF

CCK-expressing neurons in the NTS are directly activated by CCK-sensitive C-type vagal afferents.

Am J Physiol Regul Integr Comp Physiol

January 2025

Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States.

Vagal sensory afferents carrying information from the gastrointestinal tract (GI) terminate in the nucleus of the solitary tract (NTS). Different subpopulations of NTS neurons then relay this information throughout the brain. Cholecystokinin (CCK) is a satiety peptide that activates vagal afferents in the GI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!