A cDNA clone encoding a protein 69% identical in amino acid sequence with that of the Na/P(i) co-transporter NaP(i)-1 was isolated from a human kidney cDNA library. The DNA sequence was identical with that of NPT-1 cDNA published by Chong, Kristjansson, Zoghbi and Hughe (1993) (Genomics, 18, 355-359). In the present study, we have characterized the function of the encoded protein and the tissue distribution of its mRNA. Injection of RNA transcribed from NPT-1 into Xenopus oocytes resulted in expression of Na/P(i) co-transport activity showing a high affinity for P(i) transport (Km 0.29 mM). Kinetic characterization ([P(i)], [Na+]) demonstrated that the expressed transport activity has properties similar to those displayed by oocytes injected with human kidney poly(A)+ RNA. Northern blotting demonstrated that NPT-1 mRNA is expressed in renal cortex, liver and brain but not in other tissues. Hybrid depletion with antisense oligonucleotides to NaP(i)-3 and NPT-1 completely inhibited poly(A)+ RNA-induced Na(+)-dependent P(i) uptake in oocytes. These findings indicate that two high-affinity Na/P(i) cotransporters (NaP(i)-3 and NPT-1) are present in human kidney cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1136432 | PMC |
http://dx.doi.org/10.1042/bj3050081 | DOI Listing |
World J Gastrointest Oncol
January 2025
Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China.
Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, P. R. China.
Erythroferrone (ERFE) has emerged as a potential biomarker for the erythropoiesis response following recombinant human erythropoietin (rHuEPO) treatment. While the association between ERFE and hemoglobin (HGB) response to rHuEPO is well-established in nonanemic conditions, such correlation and ERFE kinetics in anemic states remain unclear. We employed two rat models of anemia, chronic kidney disease (CKD) anemia and chemotherapy-induced anemia (CIA), to determine ERFE kinetics and its correlation with HGB responses after rHuEPO administration.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Nephrology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 575001, India.
Background: We evaluated if the course of recovery from sepsis-induced acute kidney injury (AKI) can be predicted using variables collected at admission.
Methods: A total of 63 patients admitted for sepsis-induced AKI in our Mangalore ICU were evaluated and baseline demographic and clinical/laboratory parameters, including serum creatinine (SCr), base excess (BE), Plethysmographic Variability Index (PVI), Caval Index, R wave variability index (RVI), mean arterial pressure (MAP) and renal resistivity index (RI) using renal doppler and need for inotropes were assessed on admission. Patients were managed as per standard protocol.
Clin Nephrol Case Stud
January 2025
Department of Medicine.
Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Oncology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
Dipeptidase 1 (DPEP1), initially identified as a renal membrane enzyme in mature human kidneys, plays a pivotal role in various cellular processes. It facilitates the exchange of materials and signal transduction across cell membranes, contributing significantly to dipeptide hydrolysis, glucose and lipid metabolism, immune inflammation, and ferroptosis, among other cellular functions. Extensive research has delineated the complex role of DPEP1 in oncogenesis and tumor progression, with its influence being context dependent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!