1. Considerable evidence indicates that neurons in the brain stem midline and ventrolateral medulla participate in the control of breathing. This work was undertaken to detect and evaluate evidence for functional links that coordinate the parallel operations of neurons distributed in these two domains. 2. Data were from 51 Dial-urethan-anesthetized, bilaterally vagotomized, paralyzed, artificially ventilated cats. Planar arrays of tungsten microelectrodes were used to monitor simultaneously spike trains in two or three of the following regions: n. raphe obscurus-n. raphe pallidus, n. raphe magnus, rostral ventrolateral medulla, and caudal ventrolateral medulla. Efferent phrenic nerve activity was recorded to indicate the phases of the respiratory cycle. Electrodes in the ventral spinal cord (C3) were used in antidromic stimulation tests for spinal projections of neurons. 3. Spike trains of 1,243 neurons were tested for respiratory modulated firing rates with cycle-triggered histograms and an analysis of variance with the use of a subjects-by-treatments experimental design. Functional associations were detected and evaluated with cross-correlograms, snowflakes, and the gravity method. 4. Each of 2,310 pairs of neurons studied included one neuron monitored within 0.6 nm of the brain stem midline and a second cell recorded in the ventrolateral medulla; 117 of these pairs (5%) included a neuron with a spinal projection, identified with antidromic stimulation methods, that extended to at least the third cervical segment. Short-time scale correlations were detected in 110 (4.7%) pairs of neurons. Primary cross-correlogram features included 40 central peaks, 47 offset peaks, 4 central troughs, and 19 offset troughs. 5. In 14 data sets, multiple short-time scale correlations were found among three or more simultaneously recorded neurons distributed between both midline and ventrolateral domains. The results suggested that elements of up to three layers of interneurons were monitored simultaneously. Evidence for concurrent serial and parallel regulation of impulse synchrony was detected. Gravitational representations demonstrated respiratory-phase dependent synchrony among neurons distributed in both brain stem regions. 6. The results support a model of the brain stem respiratory network composed of coordinated distributed subassemblies and provide evidence for several hypotheses. 1) Copies of respiratory drive information from rostral ventrolateral medullary (RVLM) respiratory neurons are transmitted to midline neurons. 2) Midline neurons act on respiratory-related neurons in the RVLM to modulate phase timing. 3) Impulse synchrony of midline neurons is influenced by concurrent divergent actions of both midline and ventrolateral neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.1994.72.4.1830DOI Listing

Publication Analysis

Top Keywords

ventrolateral medulla
20
brain stem
20
neurons
13
stem midline
12
midline ventrolateral
12
neurons distributed
12
midline neurons
12
ventrolateral
8
midline
8
spike trains
8

Similar Publications

During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance.

View Article and Find Full Text PDF

Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.

Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.

View Article and Find Full Text PDF

The role of the dorsomedial hypothalamus in the cardiogenic sympathetic reflex in the Sprague Dawley rat.

Front Physiol

December 2024

Biomedical Science Department, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.

Myocardial ischemia causes the production and release of metabolites such as bradykinin, which stimulates cardiac spinal sensory afferents, causing chest pain and an increase in sympathetic activity referred to as the cardiogenic sympathetic afferent reflex. While the brain stem nuclei, such as the nucleus tractus solitarius and rostral ventrolateral medulla, are essential in the cardiogenic sympathetic afferent reflex, the role of other supramedullary nuclei in the cardiogenic sympathetic afferent reflex are not clear. The dorsomedial hypothalamic nucleus (DMH) is involved in cardiovascular sympathetic regulation and plays an important role in the sympathetic response to stressful stimuli.

View Article and Find Full Text PDF

Brainstem C1 neurons mediate heart failure decompensation and mortality during acute salt loading.

Cardiovasc Res

December 2024

Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile.

Aims: Heart failure (HF) is an emerging epidemic worldwide. Despite advances in treatment, the morbidity and mortality rate of HF remain high, and the global prevalence continues to rise. Common clinical features of HF include cardiac sympathoexcitation, disordered breathing, and kidney dysfunction; kidney dysfunction strongly contributes to sodium retention and fluid overload, leading to poor outcomes of HF patients.

View Article and Find Full Text PDF

Dysfunction in neuro-mesenchymal units impairs the development of bone marrow B cells in mice with anxiety.

Brain Behav Immun

February 2025

Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China. Electronic address:

The reduction in B lymphocytes observed in individuals with anxiety disorders may compromise antiviral responses, yet the precise mechanisms behind this decline remain unclear. While elevated glucocorticoid levels have been suggested as contributing factors, anxiety disorders are associated with diminished glucocorticoid signaling. Given that autonomic nervous system dysfunction is a hallmark of anxiety disorders, we established an anxiety-related behavior mouse model by stimulating C1 neurons in the rostral ventrolateral medulla.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!