Purpose: To determine whether maintenance of corneal hydration is dependent on bicarbonate ions and whether these ions can be derived from metabolic or exogenous CO2, and to investigate the relationship of transendothelial fluid movement to control of hydration.
Methods: The thickness of intact or deepithelialized rabbit corneas was measured while superfused on the endothelial surface with either 33 mM HGO3-/5% CO2 buffered media or 10 mM HPO4- buffered media in the presence and absence of inhibitors of ion transport and respiration. The corneal surface was covered with either silicone oil ("normal" corneas) or with the same media used for superfusion ("swollen" corneas). ATP and Na+,K(+)-ATPase activity were measured in endothelia scraped from the tissues after superfusion.
Results: Intact and deepithelialized corneas covered with oil swelled at a negligible rate (4 to 8 microns/hour) in 33 mM HCO3- medium but at 45 to 60 microns/hour in HPO4- medium. Antimycin A altered neither of these swelling rates, but ethoxzolamide (0.1 mM) caused swelling in HCO3-/CO2 (approximately 12 microns/hour above controls) with no change of rate in HPO4-. Ouabain (0.1 mM) increased swelling to 45 to 50 microns/hour in HCO3-/CO2 but had no effect in HPO4-. Saturating the oil on deepithelialized corneas with 5% CO2, or putting HCO3-/CO2 medium on the epithelial surface of intact corneas, did not alter the swelling rates seen with HPO4- superfusion. The equilibrium thickness of deepithelialized corneas swollen with HCO3-/CO2 on both surfaces was 35 microns less than that of corneas swollen in HPO4-. The difference was abolished by ouabain, which caused corneas in HCO3-/CO2 to swell an additional 30 microns but did not alter the equilibrium thickness of corneas swollen in HPO4-. Ethoxzolamide and DIDS (0.2 mM) increased the thickness in HCO3-/CO2 but not in HPO4-. Na+,K(+)-ATPase activities of endothelia were similar after HCO3-/CO2 and HPO4- superfusions, but the concentration of ATP in the HPO4(-)-superfused tissues was increased 35%.
Conclusions: Normal corneal thickness can be maintained in vitro only in media that contain HCO3- at concentrations of more than 20 mM. Neither metabolic CO2 nor CO2 present in air-equilibrated, nominally HCO3(-)-free media can supply this requirement for HCO3-, even though these sources support the presumably related processes of transendothelial fluid movement and intracellular pH regulation.
Download full-text PDF |
Source |
---|
J Virol
December 2024
Laboratory of Virology, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India.
Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
Biofilm-associated surgical site infection (BSSI) is a common and grievous postoperative complication lacking effective remedies, mainly due to the poor drug accumulation and penetration in the biofilms featured by dense extracellular polymeric substances (EPSs). Here, it is found that the vascular cell adhesion molecule-1 (VCAM1) is highly overexpressed in the vascular cells of BSSI. It is proposed that the combination of VCAM1-mediated transcytosis and ultrasonic cavitation can consecutively overcome the biological barriers of vascular endothelial cells and EPS for biofilm eradication.
View Article and Find Full Text PDFLab Chip
November 2024
Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
A significant challenge in the treatment of central nervous system (CNS) disorders is represented by the presence of the blood-brain barrier (BBB), a highly selective membrane that regulates molecular transport and restricts the passage of pathogens and therapeutic compounds. Traditional models are constrained by high costs, lengthy experimental timelines, ethical concerns, and interspecies variations. models, particularly microfluidic BBB-on-a-chip devices, have been developed to address these limitations.
View Article and Find Full Text PDFFluids Barriers CNS
October 2024
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
Fluids Barriers CNS
September 2024
Axoltis Pharma, 60 avenue Rockefeller, Lyon, 69008, France.
Background: Alterations of blood-brain barrier (BBB) and blood-spinal cord barrier have been documented in various animal models of neurodegenerative diseases and in patients. Correlations of these alterations with functional deficits suggest that repairing barriers integrity may represent a disease-modifying approach to prevent neuroinflammation and neurodegeneration induced by the extravasation of blood components into the parenchyma. Here, we screened the effect of a subcommissural organ-spondin-derived peptide (NX210c), known to promote functional recovery in several models of neurological disorders, on BBB integrity in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!