Inhibition of ecdysone biosynthesis in flies by a hexapeptide isolated from vitellogenic ovaries.

Mol Cell Endocrinol

Institut für Physiologische Chemie, Philipps-Universität, Marburg, Germany.

Published: August 1994

The only identified insect peptides known to be involved in controlling the biosynthesis of ecdysone, the steroid moulting hormone of arthropods, are the prothoracicotropic hormones (PTTH). These neuropeptides stimulate ecdysone biosynthesis. Recently, a hexapeptide (NPTNLH) with folliculostatic and trypsin modulating activity was isolated from vitellogenic ovaries of the fleshfly Neobellieria bullata. Here we report that the hexapeptide, when tested in vitro on the isolated ring gland of flies, inhibited ecdysone biosynthesis immediately and completely (EC50 = 5 nM). The hexapeptide is the first known factor with 'prothoracicostatic activity' and may form part of the endocrine system that controls ecdysone biosynthesis in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0303-7207(94)90060-4DOI Listing

Publication Analysis

Top Keywords

ecdysone biosynthesis
16
isolated vitellogenic
8
vitellogenic ovaries
8
biosynthesis
5
inhibition ecdysone
4
biosynthesis flies
4
hexapeptide
4
flies hexapeptide
4
hexapeptide isolated
4
ovaries identified
4

Similar Publications

Activin β Is Critical for Larval-Pupal Transition in the 28 Spotted Lady Beetle Henosepilachna vigintioctopunctata.

Arch Insect Biochem Physiol

January 2025

State Key Laboratory of Agricultural and Forestry Biosecurity, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

The activin cascade is activated when a pair of extracellular ligand (Myoglianin, Myo; Activin β, Actβ; Dawdle, Daw) binds to two pairs of transforming growth factor β (TGF) serine-threonine receptor kinases, TGF-β type I (Baboon, Babo) and II receptors. However, the roles of activin way have not well been explored in non-Drosophilid insects. In the present paper, we compared the functions of Activin β (Actβ) ligand and receptor isoform BaboB in post-embryonic development in a defoliating ladybird Henosepilachna vigintioctopunctata.

View Article and Find Full Text PDF

As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system.

View Article and Find Full Text PDF

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

Upregulation of Insulin and Ecdysone Signaling in Relation to Diapause Termination in Eggs Exposed to 5 °C.

Insects

December 2024

Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan.

In the present study, we investigated the possible correlation between insulin/ecdysone signaling and chilling-induced egg diapause termination in . Changes in () and () gene expression levels in chilled eggs (whose diapause had been terminated by chilling to 5 °C for 90 days) exhibited no significant increase after being transferred to 25 °C, which differed from both non-diapause eggs and HCl-treated eggs. We further compared the differential temporal expressions of (, -, and ), ( and ), and ( () and ()) as well as () genes between chilled eggs and eggs kept at 25 °C.

View Article and Find Full Text PDF

Steroid hormone-induced wingless ligands tune female intestinal size in Drosophila.

Nat Commun

January 2025

Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Female reproduction comes at great expense to energy metabolism compensated by extensive organ adaptations including intestinal size. Upon mating, endocrine signals orchestrate a 30% net increase of absorptive epithelium. Mating increases production of the steroid hormone Ecdysone released by the Drosophila ovaries that stimulates intestinal stem cell (ISC) divisions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!