The implantation of embryonic testis grafts into female chick embryos induces the regression of their müllerian ducts (MDs) in a certain number of cases. The treatment of either the grafts or the grafted females with testosterone propionate (TP) results in a significant increase in the number of MD regressions observed. Our data are interpretable in terms of a direct activation by TP of the anti-müllerian activity of the embryonic testis. We discuss a possible mechanism accounting for the synergistic action of testosterone and anti-müllerian hormone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00234307 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.
The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.
View Article and Find Full Text PDFN Biotechnol
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. Electronic address:
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
Background: Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood.
View Article and Find Full Text PDFRecent studies have demonstrated that the production of bidirectional enhancer-derived transcripts (eRNAs) is a characteristic of an active Cis-regulatory element (CRE). Higher levels of eRNA synthesis correlate with the activation of histone modifications, a potentially valuable tool for deciphering the complexity of the gene regulatory network. To understand the changes of CREs during gonadal development in mice, we collected gonadal WT1-positive cells from the piggyBac-Wt1-mCherry-2A-EGFP (PBWt1-RG) reporter strain at E13.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, Japan.
In mammals, SOX9/Sox9 expression in embryonic gonads is essential for male gonadal sex determination. Multiple enhancers of Sox9 have been identified, of which the mXYSRa/Enh13 enhancer plays a crucial role in mice. SOX9 and SRY binding sites within the enhancer have been identified as functional.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!