Sequence evolution of the hypervariable region 1 (HVR1) in the N terminus of E2/NS1 of hepatitis C virus (HCV) was studied retrospectively in six chimpanzees inoculated with the same genotype 1b strain, containing a unique predominant HVR1 sequence. Immediately after inoculation, all animals contained the same HVR predominant sequence. Two animals developed an acute self-limiting infection. Anti-HVR1 immunoglobulin G (IgG) was produced 40 to 60 days after inoculation and rapidly disappeared after normalization of transaminases. Another chimpanzee, previously infected with human immunodeficiency virus type 1, showed a delayed response to HVR1 epitopes after superinfection with HCV. No sequence variation of HVR1 was observed in these two animals during the transient viremia in the acute phase. Three other chimpanzees developed a chronic HCV infection. During follow up, sequence evolution occurred in two animals and their anti-HVR1 response remained at varying but detectable levels. The first mutations occurred immediately after the production of anti-HVR1 during the acute phase. However, IgM anti-HVR1 was not detectable. Remarkably, HVR1 sequences remained conserved for more than 6 years in another chronically infected animal. This correlated with the complete absence of detectable anti-HVR1 during this period. Seven years after inoculation, anti-HVR1 IgG was produced and coincided with an HVR1 alteration. These results strongly suggest the involvement of neutralizing anti-HVR antibodies in sequence evolution of HVR1 through immune selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC188641PMC
http://dx.doi.org/10.1128/JVI.69.2.773-778.1995DOI Listing

Publication Analysis

Top Keywords

sequence evolution
16
evolution hypervariable
8
hypervariable region
8
e2/ns1 hepatitis
8
hepatitis virus
8
igg produced
8
acute phase
8
sequence
7
hvr1
7
anti-hvr1
6

Similar Publications

Phylogeographic Characterization of Aedes albopictus (Skuse, 1894) in Algeria.

Acta Parasitol

January 2025

Laboratory of Parasitic Eco-Epidemiology and Population Genetics, Pasteur Institute of Algeria, Dely-Brahim, Algiers, Algeria.

Purpose: Aedes albopictus, known as the Asian tiger mosquito, is an extensively studied mosquito species recognized for its rapid global expansion and its capacity to transmit a range of viruses such as dengue, chikungunya, Zika, and yellow fever viruses. In 2010, Ae. albopictus was observed for the first time in Tizi-Ouzou, Algeria, and since then has colonized all the northern part of the country until the semi-arid areas.

View Article and Find Full Text PDF

ICTV Virus Taxonomy Profile: 2025.

J Gen Virol

January 2025

Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Šlechtitelů 27, 783 71 Olomouc-Holice, Czech Republic.

is a family of plant viruses with tripartite, positive-sense RNA genomes of about 8 kb in total. Genomic RNAs are packaged in separate virions that may also contain sub-genomic, defective or satellite RNAs. Virions are variable in morphology (spherical or bacilliform) and may be transmitted between hosts mechanically, via pollen, or non-persistently by insect vectors.

View Article and Find Full Text PDF

Metaproteomics enables the large-scale characterization of microbial community proteins, offering crucial insights into their taxonomic composition, functional activities, and interactions within their environments. By directly analyzing proteins, metaproteomics offers insights into community phenotypes and the roles individual members play in diverse ecosystems. Although database-dependent search engines are commonly used for peptide identification, they rely on pre-existing protein databases, which can be limiting for complex, poorly characterized microbiomes.

View Article and Find Full Text PDF

Background: The bean flower thrips, Megalurothrips usitatus, poses a great threat to cowpea and other legume cultivars. Chemical insecticides have been applied to control M. usitatus, but have resulted in little profit because of the rapid evolution of insecticide resistance.

View Article and Find Full Text PDF

The aromatic compound β-phenylethanol (2-PE) is inherently toxic and can inhibit cell activity in Saccharomyces cerevisiae, making it highly challenging to enhance strain tolerance through rational design due to the lack of reliable connections between tolerance phenotype and genetic loci. This study employed adaptive laboratory evolution strategy to investigate the tolerance characteristics of S. cerevisiae S288C under inhibitory concentrations of 2-PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!