The anatomy of the hippocampus, including the organization of its intrinsic neural circuits and afferents, is organized along a rostrocaudal axis. Dopamine D2 receptors are expressed in specific regions of the hippocampal complex (hippocampal subfields, entorhinal cortex, perirhinal cortex) and show differential expression along this axis. The dentate gyrus and CA3/CA4 subfields show higher numbers of D2 receptors in the rostral than in the caudal levels. In contrast, the subiculum shows the reverse gradient. We report here that Alzheimer's disease (AD) is associated with reduced expression of the dopamine D2 receptor, but the effects differ with respect to the rostrocaudal axis and area within the hippocampal complex. The number of D2 receptors is significantly reduced in the molecular layer of the dentate gyrus, CA3 subfield, and subiculum. For the dentate gyrus and subiculum, there were greater losses at more rostral levels. The CA3/CA4 subfields showed the greatest losses caudally. The entorhinal cortex, which shows only modest expression of D2 receptors in controls, does not exhibit reduced numbers in AD. The external laminae of the rostral perirhinal cortex showed more significant losses than more caudally in this cortical field. The regions showing loss of D2 receptors do not typically contain neuritic plaques, neurofibrillary tangles, or significant neuron loss. Thus other mechanisms must account for the unique gradient of D2 receptor loss in the hippocampus. The regions of reduced expression of dopamine D2 receptors do correlate well with the terminal zone of the dentate association pathway, the afferents from the amygdala and perirhinal cortex, and the sources of those afferents within the amygdala and perirhinal cortex. The specific patterns of reduced D2 receptor expression in AD are likely to contribute significantly to the disrupted information flow into and out of the hippocampus and, thus, of functions subserved by this system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.903480105DOI Listing

Publication Analysis

Top Keywords

perirhinal cortex
16
dopamine receptors
12
rostrocaudal axis
12
hippocampal complex
12
dentate gyrus
12
alzheimer's disease
8
entorhinal cortex
8
ca3/ca4 subfields
8
reduced expression
8
expression dopamine
8

Similar Publications

Transcriptional determinants of goal-directed learning and representational drift in the parahippocampal cortex.

Cell Rep

January 2025

Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:

Article Synopsis
  • Task learning involves forming and storing associations between stimuli and outcomes in memory, but individual neuron representations can change over time.
  • Researchers used two-photon calcium imaging and spatial transcriptomics to study neuron activity and gene expression in the perirhinal cortex during task training.
  • Deleting brain-derived neurotrophic factor disrupted gene expression and task learning, while prolonged training reduced representational drift and strengthened existing memory representations, highlighting key cellular mechanisms in memory stability.
View Article and Find Full Text PDF

The N-methyl-D-aspartate (NMDA) glutamate receptor is a major target of ethanol, and it is implicated in learning and memory formation, and other cognitive functions. Glycine acts as a co-agonist for this receptor. We examined whether Org24598, a selective inhibitor of glycine transporter1 (GlyT1), affects ethanol withdrawal-induced deficits in recognition memory (Novel Object Recognition (NOR) task) and spatial memory (Barnes Maze (BM) task) in rats, and whether the NMDA receptor glycine site participates in this phenomenon.

View Article and Find Full Text PDF

Time restricted feeding with or without ketosis influences metabolism-related gene expression in a tissue-specific manner in aged rats.

bioRxiv

December 2024

University of Alabama at Birmingham, Heersink School of Medicine, Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, Birmingham, AL, United State of America.

Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.

View Article and Find Full Text PDF

Face pareidolia minimally engages macaque face selective neurons.

Prog Neurobiol

January 2025

Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD, USA. Electronic address:

The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces.

View Article and Find Full Text PDF

The Anatomy of Context.

Hippocampus

January 2025

Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island, USA.

For most of my career, I focused on understanding how and where spatial context, the place where things happen, is represented in the brain. My interest in this began in the early 1990's, during my postdoctoral training with David Amaral, when we defined the rodent homolog of the primate parahippocampal cortex, a region implicated in processing spatial and contextual information. We parceled out the caudal portion of the rat perirhinal cortex (PER) and called it the postrhinal cortex (POR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!