Anatomical and functional findings support the contention that there is a distinct posterior parietal cortical area (PPC) in the rat, situated between the rostrally adjacent hindlimb sensorimotor area and the caudally adjacent secondary visual areas. The PPC is distinguished from these areas by receiving thalamic afferents from the lateral dorsal (LD), lateral posterior (LP), and posterior (Po) nuclei, in the absence of input from the ventrobasal complex (VB) or dorsal lateral geniculate (DLG) nuclei. Behavioral studies have demonstrated that PPC is involved in spatial orientation and directed attention. In the present study we used fluorescent retrograde axonal tracers primarily to investigate the cortical connections of PPC, in order to determine the organization of the circuitry by which PPC is likely to participate in these functions, and also to determine how the topography of its thalamic connections differs from that of neighboring cortical areas. The cortical connections of PPC involve the ventrolateral (VLO) and medial (MO) orbital areas, medial agranular cortex (area Fr2), portions of somatic sensory areas Par1 and Par2, secondary visual areas Oc2M and Oc2L, auditory area Te1, and retrosplenial cortex. The secondary visual areas Oc2L and Oc2M have cortical connections which are similar to those of PPC, but are restricted within orbital cortex to area VLO, and within area Fr2 to its caudal portion, and do not involve auditory area Te1. The cortical connections of hindlimb cortex are largely restricted to somatic sensory and motor areas. Retrosplenial cortex, which is medially adjacent to PPC, has cortical connections that are prominent with visual cortex, do not involve somatic sensory or auditory cortex, and include the presubiculum. We conclude that PPC is distinguished by its pattern of cortical connections with the somatic sensory, auditory and visual areas, and with areas Fr2, and VLO/MO, in addition to its exclusive thalamic connectivity with LD, LP and Po. Because recent behavioral studies indicate that PPC, Fr2 and VLO are involved in directed attention and spatial learning, we suggest that the interconnections among these three cortical areas represent a major component of the circuitry for these functions in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00227280DOI Listing

Publication Analysis

Top Keywords

cortical connections
24
visual areas
16
somatic sensory
16
secondary visual
12
connections ppc
12
areas
11
ppc
10
cortical
9
posterior parietal
8
cortex
8

Similar Publications

The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.

View Article and Find Full Text PDF

Introduction: Cerebral small vessel disease (CSVD) is a chronic systemic degenerative disease affecting small blood vessels in the brain, leading to cognitive impairments. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that applies low electrical currents to the scalp, shows promise in treating cognitive and movement disorders. However, further clinical evaluation is required to assess the long-term effects of tDCS on neuroplasticity and gait in patients with CSVD.

View Article and Find Full Text PDF

Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.

View Article and Find Full Text PDF

bFGF-Chitosan "brain glue" promotes functional recovery after cortical ischemic stroke.

Bioact Mater

April 2025

Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.

The mammalian brain has an extremely limited ability to regenerate lost neurons and to recover function following ischemic stroke. A biomaterial strategy of slowly-releasing various regeneration-promoting factors to activate endogenous neurogenesis represents a safe and practical neuronal replacement therapy. In this study, basic fibroblast growth factor (bFGF)-Chitosan gel is injected into the stroke cavity.

View Article and Find Full Text PDF

Background: We aimed to explore changes in decision-related brain microstructure, brain functional activities, and functional connectivity, and their correlations with cognitive function in end-stage kidney disease (ESKD) patients undergoing peritoneal dialysis (PD). Furthermore, the impact of dialysis on these changes was examined.

Methods: Thirty ESKD patients undergoing PD, 20 chronic kidney disease (CKD) stage 5 patients without dialysis (predialysis CKD stage 5), and 30 healthy controls (HC) were recruited for the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!