Download full-text PDF

Source
http://dx.doi.org/10.1086/BBLv187n2p261DOI Listing

Publication Analysis

Top Keywords

noise components
4
components limulus
4
limulus vision
4
noise
1
limulus
1
vision
1

Similar Publications

Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error.

View Article and Find Full Text PDF

Bioaugmented design and functional evaluation of low damage implantable array electrodes.

Bioact Mater

May 2025

State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.

Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.

View Article and Find Full Text PDF

Reliable quantification of neural entrainment to rhythmic auditory stimulation: simulation and experimental validation.

J Neural Eng

January 2025

School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, CHINA.

Objective: Entrainment has been considered as a potential mechanism underlying the facilitatory effect of rhythmic neural stimulation on neurorehabilitation. The inconsistent effects of brain stimulation on neurorehabilitation found in the literature may be caused by the variability in neural entrainment. To dissect the underlying mechanisms and optimize brain stimulation for improved effectiveness, it is critical to reliably assess the occurrence and the strength of neural entrainment.

View Article and Find Full Text PDF

Can non-human primates extract the linear trend from a noisy scatterplot?

iScience

January 2025

Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.

Recent studies showed that humans, regardless of age, education, and culture, can extract the linear trend of a noisy scatterplot. Although this capacity looks sophisticated, it may simply reflect the extraction of the principal trend of the graph, as if the cloud of dots was processed as an oriented object. To test this idea, we trained Guinea baboons to associate arbitrary shapes with the increasing or decreasing trends of noiseless and noisy scatterplots, while varying the number of points, the noise level, and the regression slope.

View Article and Find Full Text PDF

Beyond Averaging: A Transformer Approach to Decoding Event Related Brain Potentials.

Neuroimage

January 2025

Department of Computer Science, University of Innsbruck, Technikerstrasse 21a, Innsbruck, 6020, Austria. Electronic address:

The objective of this study is to assess the potential of a transformer-based deep learning approach applied to event-related brain potentials (ERPs) derived from electroencephalographic (EEG) data. Traditional methods involve averaging the EEG signal of multiple trials to extract valuable neural signals from the high noise content of EEG data. However, this averaging technique may conceal relevant information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!