Alcohol and antioxidant systems.

Alcohol Alcohol

Département de Recherches Biomédicales sur l'Alcoolisme, Université René-Descartes, Paris, France.

Published: September 1994

Following the pioneer report of Di Luzio (Physiologist 6, 169-173, 1963) concerning the prevention of the acute ethanol-induced fatty liver by antioxidants, many observations have shown that ethanol-induced liver injury may be linked, at least partly, to an oxidative stress resulting from increased free radical production and/or decreased antioxidant defence. The disturbances induced in the major hepatic enzymatic and non-enzymatic antioxidant systems following experimental acute and chronic ethanol administration are reviewed, emphasizing the important role of dietary alpha-tocopherol in modifying the induction of oxidative stress and its usual expression as increased lipid peroxidation. Adaptative increases in some elements of the hepatic antioxidant defence partly counteract the enhanced generation of prooxidant free radicals following chronic ethanol intake. By contrast, lipid peroxidation is favoured when ethanol is administered together with a fat-rich diet and/or various xenobiotics. Chronic ethanol feeding has also been reported to potentiate the oxidative stress resulting from an acute ethanol load. By generating potent chemoattractants for human neutrophils and/or by stimulating the expression of genes involved in collagen biosynthesis, liver lipid peroxidation may play an important role in the progression of steatosis to hepatitis and cirrhosis. Oxidative stress has been shown not to be restricted to the liver, but also to affect, under some experimental conditions of ethanol administration, extrahepatic tissues, such as the central nervous system, the heart and the testes. This stress can be partly prevented by vitamin E supplementation. Ethanol-induced antioxidant disturbances have also been reported in clinical studies in blood and liver biopsies. Pharmacological antioxidants could have beneficial effects in reducing the incidence of ethanol-induced changes in cellular lipids, proteins and nucleic acids. The antioxidants considered could act by reducing free radical production (e.g. chelators of redox-active iron derivatives), trapping free radicals themselves, interrupting the peroxidation process or reinforcing the natural antioxidant defence.

Download full-text PDF

Source

Publication Analysis

Top Keywords

oxidative stress
16
antioxidant defence
12
chronic ethanol
12
lipid peroxidation
12
antioxidant systems
8
free radical
8
radical production
8
ethanol administration
8
free radicals
8
ethanol
6

Similar Publications

Oxidative stress in critically ill neonatal foals.

J Vet Intern Med

January 2025

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.

Background: Oxidative injury occurs in septic people, but the role of oxidative stress and antioxidants has rarely been evaluated in foals.

Objectives/hypothesis: To measure reactive oxygen species (ROS), biomarkers of oxidative injury, and antioxidants in neonatal foals. We hypothesized that ill foals would have higher blood concentrations of ROS and biomarkers of oxidative injury and lower concentrations of antioxidants compared to healthy foals.

View Article and Find Full Text PDF

Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury.

ACS Nano

January 2025

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.

Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.

View Article and Find Full Text PDF

Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway.

J Integr Plant Biol

January 2025

Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.

Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.

View Article and Find Full Text PDF

Neuron Modulation by Synergetic Management of Redox Status and Oxidative Stress.

Small

January 2025

Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.

The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.

View Article and Find Full Text PDF

Alternative splicing (AS) plays an important role in neuronal development, function, and disease. Efforts to analyze the transcriptome of AS in neurons on a wide scale are currently limited. We characterized the transcriptome-wide AS changes in SH-SY5Y neuronal differentiation model, which is widely used to study neuronal function and disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!