The amyloid precursor protein (APP) is found in many cells including neurons, endothelial cells and blood platelets. Beta-amyloid protein (beta AP) is derived from APP and is deposited in brain and in cerebral microvasculature of individuals with Alzheimer's disease. In this study we demonstrate that beta AP interacts with human blood platelets. We found that human beta AP peptide (1-40) fibrils aggregate platelets and support their adhesion, and these interactions are mediated through platelet membrane integrin receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.1994.2883 | DOI Listing |
J Neurol
January 2025
Department of Central laboratory, Xuanwu Hospital of Capital Medical University, Beijing, 100053, P.R. China.
Background: Circadian disruptions are increasingly recognized in Alzheimer's disease (AD) patients and may influence disease onset and progression. This study examines how AD pathology affects blood-borne factors that regulate circadian rhythms.
Methods: Eighty-five participants from the Sino Longitudinal Study on Cognitive Decline were enrolled: 35 amyloid-beta negative normal controls (Aβ- NCs), 23 amyloid-beta positive normal controls (Aβ+ NCs), 15 patients with amnestic mild cognitive impairment (aMCI), and 12 with Alzheimer's disease dementia (ADD).
J Phys Chem B
January 2025
Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
It is widely believed that the aggregation of amyloid β (Aβ) peptides into soluble oligomers is the root cause behind Alzheimer's disease. In this study, we have performed room-temperature molecular dynamics (MD) simulations of aggregated Aβ oligomers of different sizes (pentamer (O(5)), decamer (O(10)), and hexadecamer (O(16))) in binary aqueous solutions containing 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF]) ionic liquid (IL). Investigations have been carried out to obtain a microscopic understanding of the effects of the IL on the dynamic environment around the exterior surfaces and within the confined nanocores of the oligomers.
View Article and Find Full Text PDFNat Commun
January 2025
Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!