The metabolic capability for the complete oxidation of glucose, i.e. aerobic glycolysis, is highly developed in the brains of neurologically mature (precocial) species at birth, whereas this activity is severely limited in the brains of neurologically immature (non-precocial) species such as the rat and human. The latter utilize a mixture of glucose and ketone bodies for synthetic and energetic activities and the advent of neurological competence associated with the capability for complete dependence on and oxidation of glucose must await the development of key enzymes such as the pyruvate dehydrogenase complex (PDHC). A similar relationship appears to exist with respect to the development of neurological maturity of different brain regions in a single species, the rat. The development of the enzymes of energy metabolism of neonatal rat brain will be discussed with respect to the energy fuels available to the neonatal brain. In particular mechanisms by which the PDHC develops in neonatal brain will be evaluated. Evidence suggests that this is due to a specific increase in enzyme protein in contrast to a general increase in mitochondrial activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000111333 | DOI Listing |
Discov Nano
January 2025
Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Graduate School of Pharmaceutical Sciences, Osaka University, Suita Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan.
γ-Glutamylcysteine (γ-EC) can increase intracellular glutathione (GSH) levels, which may prevent and alleviate age-related disorders and chronic diseases caused by oxidative damage. However, the commercial availability of γ-EC remains limited owing to its complex chemical synthesis from glutamate and cysteine. In this study, we have developed the method of the effective conversion of GSH to γ-EC to achieve the optimal reaction conditions for repeated batch production and potential application in industrial γ-EC production using the phytochelatin synthase-like enzyme NsPCS.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Diabetes affects approximately 422 million people worldwide, leading to 1.5 million deaths annually and causing severe complications such as kidney failure, neuropathy, and cardiovascular disease. Aldose reductase (AR), a key enzyme in the polyol pathway, is an important therapeutic target for managing these complications.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China.
A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.
View Article and Find Full Text PDFArch Microbiol
January 2025
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!