Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). A genetic polymorphism regulating TPMT activity in human tissue is an important factor responsible for individual differences in the toxicity and therapeutic efficacy of these drugs. Because of the clinical importance of this polymorphism, we studied 18 purine derivatives, including ribonucleosides and ribonucleotides, as potential substrates for purified human kidney TPMT. Sixteen of the compounds studied were substrates for the enzyme, with Km values that varied from 29.1 to 1270 microM and with Vmax values that varied from 75 to 2340 U/mg protein. The thiopurines tested had Km values that were uniformly lower than were those of the corresponding ribonucleosides or ribonucleotides. 6-Selenopurine derivatives had the lowest Km values of the compounds studied. Finally, oxidized purines with an OH in the 8-position were methylated by the enzyme, but 2-OH compounds were potent inhibitors of TPMT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(94)90515-0DOI Listing

Publication Analysis

Top Keywords

thiopurine methyltransferase
8
ribonucleosides ribonucleotides
8
compounds studied
8
values varied
8
purine substrates
4
substrates human
4
human thiopurine
4
methyltransferase thiopurine
4
tpmt
4
methyltransferase tpmt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!