[Apoptosis in Hodgkin's disease].

Pathologe

Institut für Pathologie, Universität zu Köln.

Published: May 1995

Previous studies have concentrated on the proliferative behaviour of the neoplastic cell compartment in Hodgkin's disease (HD). The aim of the current investigation was to analyse the frequency of programmed cell deaths in Hodgkin and Reed-Sternberg (HRS) cells in the different subtypes of HD and to correlate this phenomenon with the expression of the bcl-2 oncogene. For this purpose, we investigated paraffin-embedded material from 63 cases of HD. Oncogene expression was determined by immunohistochemistry with the monoclonal antibody bcl-2-124. The detection of apoptotic cells was facilitated by application of the in situ end-labelling (ISEL) technique. Our results confirmed that bcl-2 expression is low in the lymphocyte-predominant subtype of HD. Apoptotic cells were found in all subtypes to a variable extent and were not significantly associated with any particular subtype. Interestingly, there was no correlation of bcl-2 expression and the presence or absence of apoptotic HRS cells. Hence, other factors must be operative in the regulation of programmed cell death in HD. Such mechanisms have been described for lymphocytes under various conditions, such as negative selection in germinal centres and within the thymus, DNA damage due to irradiation, and cellular cytotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002920050093DOI Listing

Publication Analysis

Top Keywords

programmed cell
8
hrs cells
8
cells subtypes
8
apoptotic cells
8
bcl-2 expression
8
[apoptosis hodgkin's
4
hodgkin's disease]
4
disease] previous
4
previous studies
4
studies concentrated
4

Similar Publications

Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis.

Orthop Surg

January 2025

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.

Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.

View Article and Find Full Text PDF

Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.

Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.

View Article and Find Full Text PDF

Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia.

Arterioscler Thromb Vasc Biol

January 2025

Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).

Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.

View Article and Find Full Text PDF

Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications.

J Cell Sci

January 2025

National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China.

Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized.

View Article and Find Full Text PDF

Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke.

Front Mol Neurosci

January 2025

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.

PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!