The radiological hazard of radon gas to occupants in residential environments is from the particulate progeny 218Po, 214Pb, 214Bi, and 214Po, rather than 222Rn itself. Attachment to aerosols, plateout, and resuspension impact on the progeny airborne concentrations. Plateout rate and resuspension factors were measured for air change (ventilation) rates, 0.01 to 1.0 h-1, in a 0.28 m3 test chamber for interior residential materials of wallboard, drapery, carpet, ceiling tile, and concrete, and from 0.05 to 2.5 h-i for hardwood and glass. The overall accuracy of the plateout rate values is estimated to be +/- 13% standard deviation. For the different materials, the plateout rates for 218Po progeny varied by a factor of nearly six. Drapery gave the largest plateout rates. Resuspension rate factors, R, were measured for hardwood, wallboard, drapery, carpet, and glass by a new time-dependent measurement method based on the difference in buildup rate of 214Po to equilibrium caused by resuspension. Values for R obtained for hardwood, wallboard, drapery, carpet and glass were 0.31, 0.29, 0.44, 0.55, and 0.36, respectively ( +/- 30% standard deviation). All measurements were made in a continuous air conditioned interior environment maintaining temperature at 22.2 +/- 1.1 degrees C and relative humidity of 30% +/- 10%. Computations were made of equivalent plateout rates and equilibrium fractions for a standard 5 m x 5 m x 3 m high room to provide values to compare with other work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004032-199507000-00008 | DOI Listing |
Health Phys
July 1995
International Academy of Hi-Tech Services, Inc., Annapolis, MD 21403, USA.
The radiological hazard of radon gas to occupants in residential environments is from the particulate progeny 218Po, 214Pb, 214Bi, and 214Po, rather than 222Rn itself. Attachment to aerosols, plateout, and resuspension impact on the progeny airborne concentrations. Plateout rate and resuspension factors were measured for air change (ventilation) rates, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!